
Int’l Conf. on Computer & Communication Technology �ICCCT’10�

978-1-4244-9034-/10/$26.00©2010 IEEE 7

Smart Card based Secure Authentication and Key Agreement Protocol

Sandeep K. Sood, Anil K.Sarje and Kuldip Singh
 Department of Electronics & Computer Engineering

 Indian Institute of Technology
 Roorkee, India

 {ssooddec, sarjefec, ksconfcn}@iitr.ernet.in; san1198@yahoo.co.in

Abstract: In 2005, Yoon-Ryu-Yoo proposed a simple
remote user authentication scheme which is an improvement
on Hwang-Lee-Tang’s scheme. However, we found that Yoon-
Ryu-Yoo’s scheme easily reveals a user’s password and is
vulnerable to impersonation attack using stolen smart card.
This scheme is also found to be vulnerable to parallel session
attack and man-in-the-middle attack. This paper proposes a
new remote user authentication scheme that resolves the
aforementioned problems, while keeping the merits of Yoon-
Ryu-Yoo’s scheme.
Keywords: Cryptography; Password; Authentication protocol;
Smart card; Hash function.

I. INTRODUCTION
Smart cards have been widely used in many e-commerce

applications and network security protocols due to their low
cost, portability, efficiency and the cryptographic properties.
Smart card stores some sensitive data corresponding to the
user that assist in user authentication. The user (card
holder) inserts his smart card into a card reader machine and
submits his identity and password. Then smart card and card
reader machine perform some cryptographic operations
using submitted arguments and the data stored inside the
memory of smart card to verify the authenticity of the user.

In 1981, Lamport [1] proposed a password based
authentication scheme that authenticates the remote users
over an insecure communication channel. Lamport's scheme
removes the problems of password table disclosure and
communication eavesdropping. Since then, a number of
remote user authentication schemes have been proposed to
improve security, efficiency and cost. In 2000, Hwang and
Li [2] found that Lamport’s scheme [1] is vulnerable to the
risk of a modified password table and the cost of protecting
and maintaining the password table is large. Therefore, they
proposed a cost effective remote user authentication scheme
using smart card that is free from the mentioned risk.
Hwang and Li’s scheme [2] can withstand replay attack and
also authenticate the remote users without maintaining a
password table. In 2000, Sun [3] proposed a smart card
based remote user authentication scheme to improve the
efficiency of Hwang and Li’s scheme [2]. In 2002, Hwang-
Lee-Tang [4] proposed a remote user authentication scheme
that does not require any password verification table on the
remote server and legitimate users are free to choose and
change their password freely without the help of a remote
server. They claimed that their scheme provides effective

authentication and requires less computation as compared to
other schemes proposed by Wu [5] in 1995, Jan and Chen
[6] in 1998, Yang and Shieh [7] in 1999, Hwang and Li [2]
in 2000 and Chien-Jan-Tseng [8] in 2002. In 2005, Yoon-
Ryu-Yoo [9] found that Hwang-Lee-Tang’s scheme [4] is
vulnerable to stolen verifier attack and denial of service
attack using the stolen smart card. They proposed an
improved scheme to preclude the weaknesses of Hwang-
Lee-Tang’s scheme [4].

In 2009, Hsiang and Shih [11] found that Yoon-Ryu-
Yoo’s scheme [10] is vulnerable to parallel session attack,
masquerading attack and password guessing attack using
stolen smart card and proposed an improved scheme free
from these flaws. In 2009, Kim and Chung [13] found that
Yoon and Yoo’s scheme [12] is vulnerable to leak of
password using stolen smart card, masquerading user attack,
masquerading server attack, stolen verifier attack and
proposed an improved scheme free from these flaws.

In this paper, we show that the Yoon-Ryu-Yoo’s
scheme [9] easily reveals a user’s password and is
vulnerable to impersonation attack using stolen smart card.
This scheme is also found to be vulnerable to parallel
sessions attack and man-in-the-middle attack. The remedy
of these pitfalls, this paper presents an efficient scheme free
from these attacks. The proposed scheme inherits the merits
of Yoon-Ryu-Yoo’s scheme with improved security.

The rest of this paper is organized as follows. In Section
2, a brief review of Yoon-Ryu-Yoo’s scheme [9] is given.
Section 3 describes the cryptanalysis of Yoon-Ryu-Yoo’s
scheme [9] to different attacks. In Section 4, the improved
scheme is proposed. The security analysis of the proposed
improved scheme is presented in Section 5. The comparison
of the cost and functionality of the proposed scheme with
the other related schemes is shown in Section 6. Section 7
concludes the paper.

II. REVIEW OF YOON-RYU-YOO SCHEME [9]
In this section, we examine a simple remote user

authentication scheme proposed by Yoon-Ryu-Yoo [9] in
2005. Yoon-Ryu-Yoo’s scheme consists of four phases (i.e.,
registration, login, authentication and password change) as
summarized in Fig. 1. The notations used in this section are
listed in Table 1.

Int’l Conf. on Computer & Communication Technology �ICCCT’10�

8

A. Registration Phase
The user Ui registers with the server S by submitting his

identity IDi and password Pi over a secure communication
channel. The server S computes Vi = H (IDi, TTSA, x) and
Ai = H (IDi, TTSA, x) � Pi, where TTSA is the trusted time
stamp provided by a trusted time stamping authority and x is
the secret key of the server. Then the server S issues the
smart card containing secret parameters (IDi, Vi, Ai, H ())
to the user Ui through a secure communication channel.

Table 1
Notations

B. Login phase
The user Ui inserts his smart card into a card reader to

login on to the server S and submits his identity IDi
* and

password Pi
*. The smart card verifies the submitted identity

IDi
* with the stored value of IDi in its memory. Then smart

card computes Bi = Ai � Pi
* and verifies the computed

value of Bi with the stored value of Vi in its memory. If
both values match, the legitimacy of the user is assured and
the smart card proceeds to the next step. Otherwise the login
request from the user Ui is rejected. Afterwards, the smart
card computes C1 = H (Bi, T), where T is current date and
time of input device and sends the login request message
(IDi, C1

The service provider server S

, T) to the service provider server S.

C. Authentication phase
checks the format of IDi

and the validity of timestamp T by checking (T’ – T) <= �T,
where T’ denotes the server’s current timestamp and ���is
permissible time interval for a transmission delay.
Afterwards, the server S computes Bi

* = H (IDi, TTSA, x),
C1

* = H (Bi
*, T) and compares C1

* with the received value
of C1. If they are not equal, the server S rejects the login
request and terminates this session. Otherwise the server S
acquires the current time stamp T’’ and computes C2 = H
(Bi

*, C1
*, T’’) and sends the message (C2, T’’) back to the

smart card of user Ui. On receiving the message (C2, T’’),
smart card checks the validity of timestamp T’’ by checking
(T’’’ – T’’) <= �T, where T’’’ denotes the client’s smart
card current timestamp. Then the user Ui’s smart card
computes C2

* = H (Bi, C1, T’’) and compares it with

received value of C2. This equivalency authenticates the
legitimacy of the service provider server S and the login
request is accepted else the connection is interrupted.

D. Password change phase
A user Ui inserts his smart card into the card reader and

enters his identity IDi
* and password Pi

* corresponding to
his smart card. The smart card verifies the submitted identity
IDi

* with the stored value of IDi in its memory. Then smart
card computes Bi = Ai �� Pi

* = H (IDi, TTSA, x) and
compares the computed value of Bi with stored value of Vi
in its memory to verify the legitimacy of the user Ui. Once
the authenticity of cardholder is verified then the user Ui
can instruct the smart card to change his password.
Afterwards, the smart card asks the cardholder to resubmit a
new password Pi

new and then smart card updates the value
of Ai = H (IDi, TTSA, x) � �Pi stored in its memory with Ai
new = H (IDi, TTSA, x) �� Pi

new. Finally, the password of the
user Ui gets changed. Afterwards, the user Ui can login on
to the server S with his old identity IDi and using new
password Pi

new

III. CRYPTANALYSIS OF YOON-RYU-YOO’S
SCHEME

.

Yoon-Ryu-Yoo [9] claimed that their protocol can resist
various known attacks. However, we found that their
protocol is flawed for stolen smart card attack,
impersonation attack, parallel sessions attack and man-in-
the-middle attack.

A. Stolen smart card attack
A user may lose his smart card, which is found by the

attacker or the attacker steals the user’s smart card. The
attacker can extract the stored information through some
technique such as by monitoring their power consumption
and reverse engineering techniques as pointed by Kocher et
al. [14] and Messerges et al. [15]. He can extract IDi, Vi =
H (IDi, TTSA, x) and Ai = H (IDi, TTSA, x) � Pi from the
memory of smart card because smart card contains (IDi, Vi,
Ai, H ()). Then the attacker can find out the password Pi of
the user Ui as Pi = Vi � Ai. Now the attacker has the smart
card of user Ui, knows the identity IDi and password Pi
corresponding to the user Ui

In login phase of Yoon-Ryu-Yoo’s scheme [9], B

and hence can login on to the
server S.
B. Impersonation attack

i
should be equal to the stored value of Vi in the smart card.
This means that the attacker needs not to know password Pi
corresponding to the user Ui to compute C1, if the attacker
had known Vi from the stolen smart card attack.

Int’l Conf. on Computer & Communication Technology �ICCCT’10�

9

Fig. 1 Yoon-Ryu-Yoo’s scheme

Now the attacker can easily go through the steps in the
login phase to forge a valid login request message as {IDi,
C1, T}, where T is a current timestamp and C1 = H (Bi, T)
= H (Vi, T). Therefore, the attacker can successfully make a
valid login request and impersonate as a legitimate user Ui.

C. Parallel sessions attack
An attacker can masquerade as a legitimate user Ui by

creating a valid login message from the eavesdropped
communication between the client and the server without
knowing the user’s password. He can intercept the login
request message (IDi, C1, T) from the user Ui to the server
S. Then he starts a new session with the server S by sending
a login request by replaying the login request message (IDi,
C1, T) within the valid time frame window. After receiving
the login request, the server S checks the validity of IDi and
the validity of timestamp T by checking (T’ – T) <= �T,
where T’ denotes the server’s current timestamp. The server
S computes Bi

* = H (IDi, TTSA, x), C1
* = H (Bi

*, T) and
compares C1

* with received value of C1 to check the
legitimacy of the user Ui. This equivalency authenticates
the masquerading user.

D. Man-in-the-middle attack
In this type of attack, the attacker can intercept the

messages sent between the client and the server and replay

these intercepted messages within the valid time frame
window. The attacker can act as a client to the server or
vice-versa with recorded messages. He can intercept the
login request (IDi, C1, T) from the user Ui to the server S.
Then he starts a new session with the server S by sending a
login request by replaying the login request message (IDi,
C1, T) within the valid time frame window. After receiving
the login request, the server S check the format of IDi and
the validity of timestamp T by checking (T’ – T) <= �T,
where T’ denotes the server’s current timestamp. The server
S computes Bi

* = H (IDi, TTSA, x), C1
* = H (Bi

*, T) and
compares C1

* with the received value of C1 to check the
legitimacy of the user Ui. This equivalency authenticates
the masquerading user. The attacker can also intercept the
response message (C2, T’’), which is sent by the server S to
the user Ui. Using this message, the attacker can
masquerade as legitimate server S to the legitimate user Ui
by replaying this message with in the valid time frame
window. Now the attacker can act as middle man and
masquerade as legitimate client to legitimate server S and
vice-versa.

IV. PROPOSED PROTOCOL
In this section, we describe a new remote user

authentication scheme which resolves the above security
flaws of Yoon-Ryu-Yoo’s [9] scheme. Fig. 2 shows the

Int’l Conf. on Computer & Communication Technology �ICCCT’10�

10

entire protocol structure of the new authentication scheme.
Legitimate client C can easily login on to the service
provider server using his smart card, identity and password.
The notations used in this section are listed in Table 1.

1) Registration Phase: The user Ui has to submit his
identity IDi and password Pi to the server S to become a
legitimate client via a secure communication channel. The
server S computes some security parameters and stores
them on the smart card of the user Ui. Then the server S
issues the smart card to user Ui.

2) Login Phase: A user Ui inserts his smart card into a card
reader to login on to server S and submits his identity IDi
and password Pi. Smart card verifies authenticity of the
user Ui and sends user Ui’s verification information to the
destination server S.

3) Authentication Phase: Service provider server S verifies
the authenticity of the user Ui. Once the user Ui
authenticates itself to the server S then the user Ui and the
server S agree on the common session key.
4) Password change Phase: The user Ui has to authenticate
itself to smart card before requesting the password change.

A. Registration phase
A user Ui has to submit his identity IDi and password Pi

to the server S via a secure communication
channel to register itself to the server S.

Step 1: Ui � S: IDi, Pi
The server S computes the security parameters Vi = H

(IDi | TTSA |�x) � H (Pi), Ai = H (IDi | Pi) ���Pi , Bi = H
(Pi)���H (TTSA) and issues the smart card containing
security parameters (Vi, Ai, Bi, H ()) to the user Ui
through a secure communication channel.

Step 2: S � Ui: Smart card

B. Login phase
A user Ui inserts his smart card into a card reader to

login on to the server S and submits his identity IDi
* and

password Pi
*. The smart card computes Ai

* = H (IDi
* | Pi

*)
�� Pi

* and compares it with the stored value of Ai in its
memory to verify the legitimacy of the user Ui.

Step 1: Smart card checks Ai
* ?= Ai

After verification, smart card computes C1 = Vi ��H
(Pi) and C2 = H (C1 | T), where T is current date and time
of input device. Then smart card sends the login request
message (IDi

*, C2, T) to the service provider server S.

Step 2: Smart card � S: IDi
*, C2

The user U
, T

i’s smart card extracts the value of H
(TTSA) as H (TTSA) = Bi � H (Pi), which is used by the user

Ui’s smart card for the computation of the agreed session
key between the user Ui and the server S.

C Authentication phase
After receiving the login request from the user Ui, the

service provider server S verifies the received IDi
* with

stored value of IDi in its database. The server S checks the
validity of timestamp T by checking (T’ –T) <= ����where
T’ is current date and time of the server S and ���is
permissible time interval for a transmission delay. The
server S extracts the value of TTSA corresponding to the
client’s identity IDi. Then server S computes C1

* = H (IDi |
TTSA | x), C2

* = H (C1
* | T) and compares C2

* with the
received value of C2.

Step 1: Server S checks C2
* ?= C2

This equivalency authenticates the legitimacy of the user
Ui and the login request is accepted else the connection is
interrupted. Finally, the user Ui and the server S agree on
the common session key as SK = H (C1 | H (TTSA) | T).
Afterwards, all the subsequent messages between the user
Ui and server S are encrypted with this session key.

D. Password change phase
The user Ui can change his password without the help of

the server S. The user Ui inserts his smart card into a card
reader and enters his identity IDi

* and password Pi
*

corresponding to his smart card. The smart card computes
Ai

* = H (IDi
* | Pi

*) ��Pi
* and compares it with the stored

value of Ai in its memory to verify the legitimacy of the
user Ui. Once the authenticity of cardholder is verified then
the user Ui can instruct the smart card to change his
password. Afterwards, the smart card asks the cardholder to
resubmit a new password Pi

new and then Vi = H (IDi | TTSA

|�x) � H (Pi), Ai = H (IDi | Pi) ��Pi and Bi = H (Pi)���H
(TTSA) stored in the smart card can be updated with Vi

new =
H (IDi | TTSA |�x) � H (Pi

new), Ai
new = H (IDi | Pi

new) ��Pi
new and Bi

new = H (Pi
new)���H (TTSA

V. SECURITY ANALYSIS

).

Smart card is a memory card that uses an embedded
micro-processor from smart card reader machine to perform
the required operations specified in the protocol. Kocher et
al. [14] and Messerges et al. [15] pointed out that all
existing smart cards can not prevent the information stored
in them from being extracted such as by monitoring their
power consumption. Some other reverse engineering
techniques are also available

Int’l Conf. on Computer & Communication Technology �ICCCT’10�

11

Fig. 2 Proposed improvements in Yoon-Ryu-Yoo’s scheme

for extracting information from smart cards. This means that
a good password authentication scheme should provide
protection from different feasible attacks.

A. Stolen smart card attack:
In case a user's smart card is stolen by the attacker, he

can extract the information stored in its memory. The
attacker can extract Vi = H (IDi | TTSA |�x) � H (Pi), Ai =
H (IDi | Pi) ��Pi and Bi = H (Pi)���H (TTSA) from the
memory of smart card. Even after gathering this
information, the attacker has to guess IDi and Pi

B. Impersonation attack:

correctly at
the same time. It is not possible to guess out two parameters
correctly at the same time in real polynomial time.
Therefore, the proposed protocol is secure against stolen
smart card attack.

In this type of attack, the attacker impersonates as a
legitimate client and forges the authentication messages
using the information obtained from the authentication
protocol. The attacker can attempt to modify a login request
message (IDi

*, C2, T) into (IDi
*, C2

, T) so as to succeed in
the authentication phase, where T* is the attacker’s current
date and time. However, such a modification will fail in
Step 1 of the authentication phase because the attacker has
no way of obtaining the value of C1 = H (IDi

* | TTSA |�x) to
compute the valid parameter C2

*. Moreover, the attacker
can not compute the agreed session key SK = H (C1 | H
(TTSA) | T) between the user Ui

C. Parallel session attack:

and the

server S. Therefore, the proposed protocol is secure against
impersonation attack.

In this type of attack, the attacker first listens to
communication between the client and the server. After
that, he initiates a parallel session to imitate legitimate user
to login on to the server by resending the captured messages
transmitted between the client and the server with in the
valid time frame window. He can masquerade as legitimate
user Ui by replaying a login request message (IDi

*, C2, T)
with in the valid time frame window. The attacker can not
compute the agreed session key SK = H (C1 | H (TTSA) | T)
between the user Ui and the server S because the attacker
does not know the values of C1 and H (TTSA

D. Man-in-the-middle attack:

). Therefore, the
proposed protocol is secure against parallel session attack.

In this type of attack, the attacker intercepts the
messages sent between the client and the server and replay
these intercepted messages with in the valid time frame
window. The attacker can act as the client to the server or
vice-versa with recorded messages. In the proposed
protocol, the attacker can intercept the login request
message (IDi

*, C2, T) from the user Ui to the server S. Then
he starts a new session with the server S by sending a login
request by replaying the login request message (IDi

*, C2, T)
with in the valid time frame window. The attacker can
authenticate itself to the server S but can not compute the
agreed session key SK = H (C1 | H (TTSA) | T) between the
user Ui and the server S because the attacker does not know
the values of C1 and H (TTSA

E. Replay attack:

). Therefore, the proposed
protocol is secure against man-in-the-middle attack.

In this type of attack, the attacker first listen to
communication between the client and the server and then
tries to imitate user to login on to the server by resending
the captured messages transmitted between the client and

Int’l Conf. on Computer & Communication Technology �ICCCT’10�

12

the server. Replaying a login request message (IDi
*, C2

F. Leak of verifier attack:

, T)
of one session into another session is useless because the
client’s smart card uses current time stamp value T in each
new session, which makes all the messages dynamic and
valid for small interval of time. Old messages can not be
replayed successfully in any other session and hence the
proposed protocol is secure against message replay attack.

In this type of attack, the attacker may be able to steal
verification table from the server. If the attacker steals the
verification table from the server, he can use the stolen
verifiers to impersonate a participant of the authentication
protocol. In the proposed protocol, the service provider
server S knows secret x and only stores TTSA corresponding
to user identity IDi in its database. The attacker does not
have any technique to find out the value of x. In case
verifier is stolen by breaking into smart card database, the
attacker does not have sufficient information to calculate
user’s identity IDi and password Pi

G. Server spoofing attack:

. Therefore, the proposed
protocol is secure against leak of verifier attack.

In server spoofing attack, the attacker can manipulate the
sensitive data of legitimate users via setting up fake servers.
In the proposed protocol, malicious server can not compute
the session key SK = H (C1 | H (TTSA) | T) between the user
Ui and server S because the malicious server does not know
the value of C1 and H (TTSA

H. Malicious user attack:

). Moreover, the session key is
different for the same user in different login sessions.
Therefore, the proposed protocol is secure against server
spoofing attack.

A malicious privileged user Ui having his own smart
card can gather information like Vi = H (IDi | TTSA |�x) � H
(Pi), Ai = H (IDi | Pi) ��Pi and Bi = H (Pi)���H (TTSA) from
the memory of smart card. This malicious user can not
compute the value of x or TTSA from these parameters even
if he knows the values of IDi and Pi. Moreover, the value of
TTSA is unique corresponding to different users. Also the
malicious user can not generate smart card specific value of
C2 = H (C1 | T) to masquerade as other legitimate user to
service provider server S because the value of C1 is smart
card specific and depends upon the values of IDi, x and

TTSA

I. Message modification or insertion attack:

. Therefore, the proposed protocol is secure against
malicious user attack.

In this type of attack, the attacker modifies or inserts
some messages on the communication channel with the
hope of discovering the client’s password or gaining
unauthorized access. Modifying or inserting messages in the
proposed protocol can only cause authentication between
the client and the server to fail but can not allow the attacker
to gain any information about the client’s identity IDi and
password Pi

J. Online dictionary attack:

or gain unauthorized access. Therefore, the
proposed protocol is secure against message modification or
insertion attack.

In this type of attack, the attacker pretends to be the
legitimate client and attempts to login on to the server by
guessing different words as password from a dictionary. In
the proposed protocol, the attacker has to get the valid smart
card of the user Ui and then has to guess the identity IDi and
password Pi. Even after getting the valid smart card by any
mean, the attacker gets a very few chances (maximum 3) to
guess the identity IDi and password Pi because smart card
gets locked after certain number of unsuccessful attempts.
Moreover, it is not possible to guess identity IDi and
password Pi

K. Offline dictionary attack:

correctly at the same time in real polynomial
time. Therefore, the proposed protocol is secure against
online dictionary attack.

In offline dictionary attack, the attacker can record
messages and attempt to guess the user’s identity IDi and
password Pi from recorded messages. The attacker first tries
to obtains the user Ui’s verification information T, C2 = H
((H (IDi | TTSA |�x) | T) and then tries to guess the IDi, x and
TTSA by offline guessing. Even after gathering this
information, the attacker has to guess all three parameters
IDi, x and TTSA correctly at the same time. It is not possible
to guess all three parameters correctly at the same time in
real polynomial time. In another option, the attacker
requires smart card of user Ui and then has to guess the
identity IDi and password Pi correctly at the same time. It is
not possible to guess two parameters correctly at the same
time in real polynomial time. Therefore, the proposed
protocol is secure against offline dictionary attack.

Table 2
Cost comparison among related smart card based authentication schemes

Int’l Conf. on Computer & Communication Technology �ICCCT’10�

13

 E1: Memory needed in the smart card.
 E2: Communication cost of the authentication.
 E3: Computation cost of the registration.
 E4: Computation cost of the user.

 E5: Computation cost of the service provider server.

Table 3
Functionality comparison among related smart card based authentication schemes

VI. COST AND FUNCTIONALITY ANALYSIS
An efficient authentication scheme must take

communication and computation cost into consideration
during user’s authentication. The cost and functionality
comparison of the proposed scheme with the relevant smart
card based authentication schemes is summarized in Table 2
and Table 3. Assume that the identity IDi, password Pi and
timestamp value are all 128-bit long. Moreover, we assume
that the output of the secure one-way hash function is 128-
bit. Let TH and TX denote the time complexity for hash
function and XOR operation respectively. Typically, time
complexity associated with these operations can be roughly
expressed as TH >> TX. In the proposed protocol, the
parameters stored in the smart card are Vi, Ai, Bi and the
memory needed in the smart card (E1) is 384 (= 3*128) bits.
The communication cost of authentication (E2) includes the
capacity of transmitting message involved in the
authentication scheme. The capacity of transmitting message
{IDi, C2

4T

, T} is 384 (= 3*128) bits. The computation cost of
registration (E3) is the total time of all operations executed in
the registration phase. The computation cost of registration is

H + 3TX. The computation cost of the user (E4) and the
service provider server (E5) is the time spent by the user and
the service provider server during the process of
authentication. Therefore, both the computation cost of the
user and that of the service provider server are 4TH + 3TX
and 4TH + 1TX respectively. The proposed scheme requires
less computation than that of latest schemes proposed by
Kim-Chung [13] and Hsiang-Shih [11] and is secure against
different possible attacks launched by the attacker.

VII. CONCLUSION
Corporate network and e-commerce applications require

secure and practical remote user authentication solutions.
Smart card based password authentication is one of the most
convenient ways to provide multi-factor authentication for
the communication between a client and a server. In this
paper, we present a cryptanalysis of Yoon-Ryu-Yoo’s
scheme by showing that their scheme is vulnerable to stolen
smart card attack, impersonation attack, parallel session
attack and man-in-the-middle attack. An improvement to
Yoon-Ryu-Yoo’s scheme is proposed that inherits the merits

Int’l Conf. on Computer & Communication Technology �ICCCT’10�

14

of Yoon-Ryu-Yoo’s scheme and enhances the security of
their scheme. The proposed protocol is simple and fast if the
user possesses valid smart card, knows the correct identity
and correct password for its authentication. The proposed
protocol is practical and efficient because only one-way hash
functions and XOR operations are used in its
implementation. Security analysis proved that the improved
scheme is more secure and practical.

REFERENCES

[1] L. Lamport, “Password Authentication with Insecure Communication,”
Communications of the ACM, vol. 24, no. 11, pp. 770-772, November
1981.

[2] M.S. Hwang and L.H. Li, “A New Remote User Authentication
Scheme using Smart Cards,” IEEE Transactions on Consumer
Electronics, vol. 46, no. 1, pp. 28-30, February 2000.

[3] H.M. Sun, “An Efficient Remote User Authentication Scheme using
Smart Cards,” IEEE Transactions on Consumer Electronics, vol. 46,
no. 4, pp. 958-961, November 2000.

[4] M.S. Hwang, C.C. Lee and Y.L. Tang, “A Simple Remote User
Authentication,” Mathematical and Computer Modelling, vol. 36, pp.
103-107, October 2002.

[5] T.C. Wu, “Remote Login Authentication Scheme Based on a
Geometric Approach,” Computer Communications, vol. 18, no. 12, pp.
959-963, December 1995.

[6] J.K. Jan and Y.Y. Chen, “‘Paramita Wisdom’ Password Authentication
Scheme without Verification Tables,” The Journal of Systems and
Software, vol. 42, no. 1, pp. 45-57, July 1998.

[7] W.H. Yang and S.P. Shieh, “Password Authentication Schemes with
Smart Card,” Computers & Security, vol. 18, no. 8, pp. 727-733,
February 1999.

[8] H.Y. Chien, J.K. Jan and Y.M. Tseng, “An Efficient and Practical
Solution to Remote Authentication: Smart Card,” Computers &
Security, vol. 21, no. 4, pp. 372-375, August 2002.

[9] E.J. Yoon, E.K. Ryu and K.Y. Yoo, “An Improvement of Hwang-Lee-
Tang’s Simple Remote User Authentication Scheme,” Computers &
Security, vol. 24, no. 1, pp. 50-56, February 2005.

[10] E.J. Yoon, E.K. Ryu and K.Y. Yoo, “Further Improvement of an
Efficient Password Based Remote User Authentication Scheme using
Smart Cards,” IEEE Transactions on Consumer Electronics, vol. 50,
no. 2, pp. 612-614, August 2004.

[11] H.C. Hsiang and W.K. Shih, “Weaknesses and Improvements of the
Yoon-Ryu-Yoo Remote User Authentication Scheme using Smart
Cards,” Computer Communications, vol. 32, no. 4, pp. 649-652, March
2009.

[12] E.J. Yoon and K.Y. Yoo, “More Efficient and Secure Remote User
Authentication Scheme using Smart Cards,” Proc. of 11th

[13] S.K. Kim and M.G. Chung, “More Secure Remote User Authentication
Scheme,” Computer Communications, vol. 32, no. 6, pp.
1018-1021, April 2009.

International
Conference on Parallel and Distributed System, vol. 2, pp. 73-77, July
2005.

[14] P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis,” Proc.
CRYPTO 99, Springer-Verlag, pp. 388-397, August 1999.

[15] T.S. Messerges, E.A. Dabbish and R.H. Sloan, “Examining Smart-
Card Security under the Threat of Power Analysis Attacks,” IEEE
Transactions on Computers , vol. 51, no. 5, pp. 541-552, May 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

