
JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.1 (1-9)

Big Data Research ••• (••••) •••–•••

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Efficient Resource Management System Based on 4Vs of Big Data

Streams✩

Navroop Kaur ∗, Sandeep K. Sood

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 July 2016
Received in revised form 31 December 2016
Accepted 20 February 2017
Available online xxxx

Keywords:
Big data streams
Cloud computing
Self-organizing maps
Characteristics of Data (CoD)

Big data streams are generated continuously at unprecedented speed by thousands of data sources.
The analysis of such streams need cloud resources. Due to growth of big data over cloud, allocating
appropriate cloud resources has emerged as a major research problem. The current methodologies
allocate cloud resources based upon data characteristics. But due to random nature of data generation, the
characteristics of data in big data streams are unknown. This poses difficulty in selecting and allocating
appropriate resources to big data stream. Solving this problem, an efficient resource management system
is proposed in this paper. The proposed system initially estimates the data characteristics of big data
stream in terms of volume, velocity, variety and variability. The estimated values are expressed in terms
of a vector called Characteristics of Data (CoD). On the other hand, clusters of cloud resources are created
dynamically with the help of Self-Organizing Maps (SOM). SOM uses CoD to create and allocate cluster to
big data stream. Moreover, the topological ordering of clusters formed by SOM is used to reduce waiting
time. The proposed system is tested experimentally. The experimental results show that the proposed
system not only efficiently predicts data characteristics but also effectively enhanced the performance of
cloud resources.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Rapid development and adoption of smart objects in every
sphere has amplified the prevalence of Internet of Things (IoT). The
growing number of IoT devices has led to a drastic increase in data
volume and data velocity. On the other hand, the heterogeneity of
IoT devices enhances data variety. Consequently, IoT data is char-
acterized by volume, velocity and variety.

According to Gartner IT Glossary [1], big data is defined as:

“Big data is high-volume, high-velocity and/or high-variety informa-
tion assets that demand cost-effective, innovative forms of informa-
tion processing that enable enhanced insight, decision making, and
process automation.”

With respect to the above definition, it can be stated that the data
harvested by IoT devices has entered big data era.

Furthermore, in a smart environment, some of the IoT devices
are periodic while the others are event triggered [2]. The peri-
odic devices generate constant amount of data at regular intervals,

✩ This article belongs to Online Forecasting.
* Corresponding author.

E-mail addresses: navonline98@gmail.com (N. Kaur), san1198@gmail.com
(S.K. Sood).

thereby generating big data streams. On the other hand, event trig-
gered devices are activated when certain event is encountered. The
erratic nature of trigger event varies data flow rate. The variation
in data flow rate is termed as variability. Therefore, in addition to
volume, velocity and variety, IoT data satisfies another dimension
of big data called variability.

The IoT devices can generate data stochastically. For example,
one event triggered device may, in turn, trigger other IoT devices.
In such a case, it is difficult to determine how many devices will
be activated and how much data will be generated. Such stochastic
nature leads to the generation of big data streams with unknown
characteristics. Here, data characteristics imply volume, velocity,
variety, and variability of data.

Apart from the IoT devices, big data streams are generated by
other applications too, such as social media, click-streams, business
transactions, GPS systems, and sensor networks. Intuitively, these
applications generate huge volumes of data at high velocity. More-
over, data from these sources consists of images, video, audio and
text which contribute to data variety. The trending topics on social
media and daily/seasonal loads enhance variability. Therefore, big
data streams from these sources are characterized by 4Vs: Volume,
Velocity, Variety and Variability. It can be noted here that big data
streams from most of the applications are generated randomly and
therefore they too have unknown characteristics.

The incessant and unprecedented speed of big data streams es-
calates the problem of its real time analysis. Conventionally, cloud

http://dx.doi.org/10.1016/j.bdr.2017.02.002
2214-5796/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.bdr.2017.02.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:navonline98@gmail.com
mailto:san1198@gmail.com
http://dx.doi.org/10.1016/j.bdr.2017.02.002

JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.2 (1-9)

2 N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–•••

computing is used to tackle this issue. But with the growth of big
data over cloud [3], selecting appropriate cloud resources for such
real time analysis has emerged as major research problem. The cur-
rent practices [4–6] allocates cloud nodes based upon user-defined
memory size, GPU power and processing power. For such an al-
location, the user must be acquainted with characteristics of data
(or the 4Vs of data). For example, the user selects higher memory
size for higher volume data; higher GPU power for video streams
and higher processing power for higher velocity and higher vari-
ability. Alternatively, user selects cloud nodes based upon the 4Vs
of data stream. Such resource selection is limited by the expertise
of user. Moreover, even if the user is expert, the knowledge of data
characteristics is necessary.

As stated earlier, the 4Vs of incoming big data streams are un-
known to the user due to random data generation by IoT devices
and other applications. Therefore, user is unable to determine ap-
propriate cloud resources for real-time data analysis.

In order to solve this problem, an efficient resource manage-
ment system is proposed in this paper. The proposed system ini-
tially estimates the characteristics of data which are expected to
arrive in next time interval. In order to estimate data character-
istics, all the 4Vs are taken on-board. Later, the 4Vs are used to
dynamically create and allocate clusters of free cloud resources
with the help of Self-Organizing Maps (SOM). The clusters formed
by SOM are created in topological ordered fashion such that more
is the relationship among clusters, closer is their ordering. The pro-
posed method exploits such topological ordering to reduce waiting
time.

The rest of the paper is organized as follows. Section 2 investi-
gates the related work. Section 3 presents the detailed description
of proposed system. Section 4 provides experimental setup, results
and discussion. Lastly, Section 5 concludes the paper.

2. Related work

The computing resources offered by traditional computing
paradigms are unable to handle large volumes of complex data [7].
As a result, cloud computing emerged as a powerful technology
which offers on-demand and unlimited resources. Pumma, Acha-
lakul and Li [8] posited that suitable amount of cloud resources
should be determined prior to the start of execution. Consequently,
literature finds vast amounts of work on resource prediction and
resource provisioning algorithms [9–11]. In addition, there are
many articles which are focused on specific cloud applications [6,
12–20]. Nevertheless, the work on big data application scheduling
is still sparse.

The growth of big data over cloud [3] ushers the issue of se-
lecting appropriate cloud resources. In 2015, Vasile et al. [21]
emphasized that dynamic resource provisioning is a challenging
issue in big data application scheduling. The authors in Ref. [22]
proposed various research directions for real time, distributed, dy-
namic, adaptive and multi-objective scheduling of big data appli-
cations. Sfrent and Pop [23] accentuated that efficient resource
scheduling algorithm plays an essential role for big data applica-
tions. They found that best resource scheduling algorithm can be
discovered under certain conditions.

In 2014, Sandhu and Sood [5] proposed a QoS based framework
to determine and allocate optimal resources to big data applica-
tions over distributed cloud. In the proposed framework, the func-
tional and QoS requirements are provided by the user. The func-
tional requirements include processing power, GPU power, RAM
and size of input data. On the other hand, the QoS requirements
include response time, quality of output data and visualization of
results. Based on functional and QoS requirements, the required
cloud cluster is determined using Naïve Bayes algorithm. Later, the
proposed framework uses SOM to allocate cloud resources to big

Fig. 1. Overview of the proposed system.

data application. This framework is efficient only if the functional
requirements are known to the user.

Streaming big data applications escalated the need and prob-
lem of real time data processing. Various tools such as Scribe [24],
Nova [25], Incoop [26], Apache Simple Scalable Streaming System
(S4) [27], Apache Storm [28], and Apache Flume [29] emerged as
a solution to streaming big data problem. These tools focused on
processing big data streams but ignored the resource scheduling
strategy. To bridge this gap, Sun et al. [30] proposed a graph based
method. The proposed method schedules resources held by these
tools such that energy-efficiency is enhanced without effecting the
response time.

Furthermore, the authors in [31] proposed a method to pro-
cesses data streams such that the profit of cloud provider is max-
imized. In 2016, Rahman and Graham [32] developed a priority
based method for multimedia data processing. But the methods
proposed in [31] and [32] are static hybrid algorithms.

The authors in [33] argued that it is necessary to predict the
volume of streaming big data for efficient node allocation. They
efficiently predicted the size of big data using Markov chain and
assigned nodes for data processing accordingly. But the model does
not consider the velocity, variety and variability of big data for re-
source allocation. In 2014, Castiglione et al. [34] emphasized that
variability at cloud data center effects the cloud resource alloca-
tion. In 2016, Peng et al. [35] presented a strategy to allocate
cloud resources to the incoming request based upon its applica-
tion type (data variety). In 2015, Baughman et al. [36] illustrated
that predicting the velocity of incoming big data request is crucial
for efficient provisioning of cloud resources. From these studies, it
is concluded the 4Vs of streaming big data are important parame-
ters for cloud resource allocation.

To the best of our knowledge, none of the aforementioned stud-
ies considered the 4Vs of the streaming data for efficient cloud
resource allocation. Therefore, the prime contribution of this paper
is to exploit various dimensions of big data streams for efficient
resource allocation.

3. Proposed system

The proposed system is aimed to allocate appropriate resources
to big data stream based upon its 4Vs. To achieve the required goal,
the proposed system works in two steps. The first step initially
extracts small chunks of data from incoming stream as shown in
Fig. 1. The chunk size is a small multiple of default block size of
underlying storage system (such as HDFS which has default block
size of 64 MB). Limiting chunk size to the size of few blocks re-
duces the overhead to read and analyze data. The selected data
chunk is analyzed to estimate the volume and velocity of various
varieties of data in the stream. While estimating these values, the
variability of data is considered. In this way, all the 4Vs of big data
stream are covered by the proposed system. The estimated values
are expressed in terms of a vector called Characteristics of Data
(CoD). The second step uses CoD to dynamically create and allo-
cate clusters of free cloud resources using SOM.

After ‘r’ time units, another chunk is selected using adaptive
sampling technique [37] as shown in Fig. 1. Here, ‘r’ depends upon
the sampling rate. The initial sampling rate is selected according

JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.3 (1-9)

N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–••• 3

Fig. 2. Estimating data characteristics.

to Nyquist–Shannon sampling theorem (i.e. sampling rate is twice
the frequency of data arrival). This mechanism allows the system
to capture variability of a newly arrived stream at an early stage
and thereby allocate appropriate cluster. Later, adaptive sampling
technique adjusts the sampling rate autonomously. For adjusting
sampling rate, migration overhead [38] is considered. The value
of ‘r’ is increased if migration overhead is high and decreased if
execution time is high. The sampled data chunk is analyzed again
and resources are allocated using the above mentioned steps. The
detailed description of the two steps is given in the subsections
that follow.

3.1. Step 1: estimating data characteristics

For estimating data characteristics, the data chunk is analyzed
in four stages as shown in Fig. 2. In the first stage, data variety is
determined. The second stage estimates the volume and velocity
of data using data variability. The third stage is meant to overcome
the lack standard values of volume and variety which define big
data. In other words, given a value of data volume and velocity,
it cannot be determined whether it is big data or not. In order to
tackle this issue, the third step compares the values with other re-
quest arriving at cloud and calculates relative volume and velocity.
The final stage is meant for efficient representation of relative val-
ues. The detailed explanation of these stages is given below.

3.1.1. Variety determination
Broadly, big data streams consist of text data, image data, audio

data, and video data. This classification of data variety is geared by
the available types of big data analytics. Big data analytics refers to
the techniques used for unlocking potential intelligence from data.
There are mainly four types of big data analytics [39], namely, text
analytics, image analytics, audio analytics, and video content an-
alytics. Text analytics extract information from textual data such
as emails, news, social network feeds, log files, business transac-
tions and many more. Image analytics is important in wide range
of big data applications. Specifically, medical and geospatial images
need dedicated and rigorous image analytic algorithms to detect
analogies and anomalies. Audio analytics is used to extract infor-
mation from unstructured audio. For example, analysis of millions
of recorded calls at call centers, diagnosis and treatment of speech
related medical conditions [40], analysis of infant cries [41], and
other social media audios. Video content analytics is meant to ex-
tract useful information from video streams. Video data is basically
a sequence of images, arriving at a certain frequency, usually ac-
companied by audio and sometimes by text subtitles. Therefore, it
can be said that video analytics is a more rigorous and complex
form of audio, image and text analytics. With the prevalence of
closed-circuit television (CCTV) and video sharing websites, video
analytics is gaining momentum.

The variety determination stage uses bloom filter [42]. Bloom
filter allows the stream elements that meet a criterion to pass

Algorithm 1 Bloom filter.
Input: Array BF [n], Set S , Hash functions h1,h2, ,hk
Step 1: Initialize, BF [1]. BF [n] = 0
Step 2: for each key yiε S
Step 2.1: Calculate h1(yi), ,hk(yi)

Step 2.2: Set BF [h j(yi)] = 1, 1 ≤ j ≤ k
Step 3: for each stream element ′e′ arriving at the filter
Step 3.1: Calculate h1(e), ,hk(e)
Step 3.2: if BF [h j(e)] = 1 for all j
Step 3.2.1: Allow ′e′ to pass

Step 4: Exit

Fig. 3. Working of bloom filter with n = 13, m = 3 and k = 2.

through, rejecting the other ones. It consists of (i) an array of n
bits, all initialized to 0’s; (ii) a collection of k hash functions h1,
h2, . . . , hk; (iii) a set S of m key values. Each hash function maps
key values to n buckets, corresponding to n bits of array. The pur-
pose of bloom filter is to allow stream elements which are in S
while rejecting the other ones.

If p is the acceptable false positive rate then the values of n
and k are calculated using Eqs. (1)–(2).

n = ceil

(−m ∗ ln(p)

[ln(2)]2
)

(1)

k = round

(
ln(2) ∗ n

m

)
(2)

The working of bloom filter is given by Algorithm 1. An ex-
ample of its working is shown in Fig. 3. Here, there are three key
values X, Y , Z . Initially these values are hashed using the two hash
functions and the corresponding bits are set to 1. When a stream
element W is encountered, the two hash functions are calculated
again. It can be observed that W results in a hash value which is
‘0’. Therefore, W is not allowed to pass through.

In the proposed system, four bloom filters are used as shown
in Fig. 2. The first filter allows only images to pass and blocks the
data of other varieties. Similarly, the second, third and fourth filter
respectively allows audio, video and text data to pass. The imple-
mentation of all bloom filters is same except for the data type.

Here, set S of a particular bloom filter consists of all the possi-
ble data formats. For example, set S in the first filter comprises of
all the image formats such as jpeg, png, etc. The set S in the sec-
ond filter consists of all the audio formats such as mp3, wav, aiff,
etc. Similarly, the set S of the other two filters are constructed.
Hence, the value m is equal to the total number of formats in S .

JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.4 (1-9)

4 N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–•••

The values of n and k are calculated using Eq. (1) and Eq. (2) re-
spectively. The hash functions are selected such that every format
hashes to one unique element of the array. The data which is al-
lowed to pass is stored in its respective virtual bucket as shown in
Fig. 2. Therefore, there are four buckets corresponding to the four
filters (or four data types). These four buckets are initially empty.
Data is added to them as it passes through the filter.

The absolute value of data volume in the bucket and the ve-
locity at which it is added is calculated. Let ρt (I) and ut(I) be
absolute volume and velocity of image data at tth time instance.
These values are initiated to zero. Every time image data is added
to its respective bucket, the volume and velocity values are up-
dated using Eq. (3) and Eq. (4). Here, δ denotes the volume of data
passed through the filter at one time instance.

ρt(I) = ρt(I) + δ (3)

ut(I) = ut(I) + 1 (4)

Similarly, the volume ρt(A) of audio data, velocity ut(A) of
audio data, volume ρt(V) of video data, velocity ut(V) of video
data, volume ρt(T) of text data and velocity ut(T) of text data
is calculated from their respective buckets. Using these values, the
volume and velocity of data which is expected to arrive at (t+1)th
instance is predicted at second stage of estimating data character-
istics.

3.1.2. Volume & velocity prediction using variability
Data flow can be inconsistent with periodic peaks, or when

something is trending on social media. Such variability leads to
generation of data in high volume and at high velocity during a
particular time period. Therefore, variability plays a significant role
while estimating volume and velocity of data which is expected to
arrive in next time interval.

In order to predict volume and velocity by considering variabil-
ity as an important factor, auto-regressive model [43] is used as
shown in Fig. 2. Auto-regressive model is remarkably flexible in
handling a wide range of time-varying processes. It forecasts the
value of variable using a linear combination of predictors. It oper-
ates under the premise that past values have significant effect on
future trends. Consequently, considering variability during predic-
tion is an inherent property of auto-regressive model.

Let ρ ′
t+1(I) and u′

t+1(I) denote the predicted values of volume
and velocity of image data at (t + 1)th time instance. Using auto-
regressive model, these values are given by Eq. (5) and Eq. (6)
respectively.

ρ ′
t+1(I) = α1ρt(I) + α2ρt−1(I) + · · · + αqρt−q+1(I) (5)

u′
t+1(I) = β1ut(I) + β2ut(I) + · · · + βqut−q+1(I) (6)

where

αi = cov(ρt(I),ρt−i(I))

var(ρt(I))

and

βi = cov(ut(I),ut−i(I))

var(ut(I))

Here cov() and var() stands for co-variance and variance re-
spectively. Similarly, the predicted volume and velocity of audio,
video and text data is calculated using auto-regressive model. The
equations for their prediction are same as Eq. (5) and Eq. (6) with
the only exception of data type, so they are omitted here.

3.1.3. Calculating relative volume and velocity
As stated earlier, there are no standard values which define big

data. Therefore, the predicted values of volume and velocity in sec-
ond stage are compared with other requests arriving on cloud data
center. Such comparison allows the system to identify how intense
is the volume and velocity of incoming big data stream. The values
obtained after comparison are called relative volume and velocity.
The calculation for relative volume and velocity of image data is
discussed below. The calculation for audio, video and text data are
similar with the only change of data type.

The relative volume and velocity of image data is calculated
using Eq. (7) and Eq. (8). Here, max(ρt(I)) and max(ut(I)) are re-
spectively the maximum volume and velocity of image data among
all the streams arriving at the system during time span ‘t ’.

ρ ′′
t+1(I) = round

(
ρ ′
t+1(I)

max(ρt)
,1

)
(7)

u′′
t+1(I) = round

(
u′
t+1(I)

max(ut)
,1

)
(8)

Here, the function round(num, num_digit) rounds the number
“num” to “num_digit” number of decimal places. Therefore, in
Eqs. (7)–(8), the relative volume and velocity is rounded to one
decimal place.

Furthermore, the big data stream whose volume is equal to
max(ρt(I)), will have its relative volume equal to one. This implies
that the maximum value for relative volume is one. Intuitively, the
lowest value is zero. Therefore, Eq. (7) will result in the value in
the range [0, 1]. Moreover, since the value is rounded to one dec-
imal place, so {0, 0.1, 0.2, . . . , 0.9, 1} is set of possible values of
relative volume. Similar is the case for relative velocity.

3.1.4. Efficient representation of predicted 4Vs
After predicting the 4Vs, it is necessary to represent the val-

ues in a form which can be efficiently used to allocate appropriate
cloud resources. To achieve this goal, initially, the intensity of im-
age data ϕ(I) is calculated by using Eq. (9).

ϕ(I) = ρ ′′
t+1(I) ∗ u′′

t+1(I) (9)

The intensities of audio, video and text data are calculated cor-
respondingly. It can be noted that the intensity lies in the range
of 0 and 1, both values inclusive. This is due to the fact that both
ρ ′′
t+1() and u′′

t+1() lie in the range [0, 1].
After obtaining intensities of image, audio, video and text data,

they are simply represented in the form Characteristics of Data
(CoD) vector. CoD is defined as

Definition 1 (Characteristics of Data (CoD)). If A = {0, 0.1, 0.2, . . . ,
0.9, 1} and ϕ(I), ϕ(A), ϕ(V) and ϕ(T) denote the intensities of
image, audio, video and text data respectively, of big data stream,
then Characteristics of Data is defined by a vector (Q 1, Q 2, Q 3, Q 4),
where Q i ∈ A and Q 1 = ϕ(I), Q 2 = ϕ(A), Q 3 = ϕ(V), and Q 4 =
ϕ(T). In other words, CoD = (ϕ(I), ϕ(A), ϕ(V),ϕ(T)).

Therefore, the first step takes a chuck of stream, estimates its
4Vs, and represents it in the form of CoD vectors. These vectors
are used as input to the second step of proposed system.

3.2. Resource management

The second step works in two stages. First stage forms dynamic
clusters of cloud resources while the second stage allocates an ap-
propriate cluster to big data stream. The detailed explanation of
these two stages can be given in the subsections that follow.

JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.5 (1-9)

N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–••• 5

Fig. 4. Input and output layer of SOM.

3.2.1. Dynamic cluster formation
Dynamic clusters are formed with the help of SOM. SOM is one

of the unsupervised neural network learning techniques for cluster
analysis. It consists of an input layer and an output layer as shown
in Fig. 4. The input layer consists of input vectors while the output
layer consists of output vectors. Note that, for simplicity, only few
vectors are shown in Fig. 4. Weights are assigned to edges moving
from input to output layer.

The output vectors in SOM are represented by neurons. These
neurons are arranged on a flat grid in topological ordered fashion.
Fig. 5(a) shows output neurons as squares. It can be observed from
the figure that the squares with different shades of red are lying
towards left of the grid. Similarly, green colored neurons are ly-
ing at top right corner of the grid. Similar is the case with blue
colored neurons. This color coding represents their topological or-
dering. In other words, the neurons with similar color coding are
more closely related to one another. Furthermore, the input vec-
tors before clustering is done by SOM are shown by grey colored
circles in Fig. 5(a). They are clustered such that the topological or-
dering is preserved as shown in Fig. 5(b). It can be observed From
Fig. 5(b) that the input vectors move closer to one of the output
vector. The closer input vectors are added to a single cluster (as
shown by color coding in Fig. 5(b)). In this way, the number of re-
sources in a cluster is autonomously decided by SOM. It can also
be observed that the clusters, hence formed, preserve the topolog-
ical ordering of output vectors.

In the proposed system, CoD vectors are output vectors while
the vectors corresponding to cloud resources are input vectors (as
shown in Fig. 4). The input vectors are clustered by SOM using
Procedure 1. The procedure starts with the initialization of weights
and learning factor η. The learning factor defines the speed with
which neural network learns. It is initialized to a value slightly
lower than 1 which decreases monotonically with the passage of
time. This implies that initially SOM learns quickly and later the
speed of learning is decreased. After initialization, SOM randomly
chooses one of the resource vectors (Si) and finds its distance from
each CoD vector. The CoD vector (C J) with minimum distance is
the winning vector. Therefore, resource Si is allocated to stream
with CoD C J . This process is repeated for every resource. All the
resources whose winning vector is C J are said to be in one cluster.

Furthermore, the clusters formed using SOM are identified by
using a parameter called Characteristics of Cluster (CoC). CoC can
be formally defined as

Definition 2 (Characteristics of Cluster (CoC)). If A = {0, 0.1, 0.2, . . . ,
0.9, 1} and CoD = (Q 1, Q 2, Q 3, Q 4) is the winning output vector
for the resources in cluster, then Characteristics of Cluster is de-
fined by a vector (R1, R2, R3, R4), where Ri ∈ A and R1 = Q 1, R2 =
Q 2, R3 = Q 3, R4 = Q 4.

In other words, if C J is the winning CoD vector for the re-
sources in cluster ‘i’, then CoC of cluster ‘i’ is equal to C J .

3.2.2. Dynamic cluster allocation
Once clusters are formed, their allocation is a simple process.

Initially, a cluster with CoC = CoD formed by big data stream is se-
lected for allocation. If the selected cluster has enough resources to

Fig. 5. Dynamic cluster formation using SOM. (a) Topological ordered output vectors;
(b) Clustering of input vectors such that topological ordering is preserved.

process the stream, then it is allocated. Otherwise, a nearest topo-
logical ordered cluster having enough resources is searched and
allocated. Such a scheme allows the streams to avoid waiting for
the respective cluster to get free. Therefore, the waiting time is re-
duced. Here, it can be noted that whole of the big data stream
converge at the same allocated cluster.

Procedure 1 Dynamic clustering by SOM.
1. Initialize weights from inputs to outputs to a small random value.
2. Assign value slightly less than 1 to the learning factor η.
3. Repeat steps 3 to 9 while computation bounds are not exceeded.
4. For each input vector S i , repeat steps 6 to 8.
5. For each output neuron j, calculate square of Euclidean distance of S as

D(j) =
q∑

k=1

(S ik − W jk)
2

6. Select J such that D(J) is minimum.
7. Set CoC(S i) = CoD(C J)

8. Update weights of all topological neighbors of J such that

W jk(t + 1) = (
1− η(t)

)
W jk(t) + η(t)Sk

9. Decrement η monotonically
10. Output the virtual clusters with their respective CoC.

3.3. Workflow of proposed method

The detailed workflow of proposed system is shown by hor-
izontal swim lane diagram in Fig. 6. As shown in diagram, the
system executes its two steps in close co-ordination in following
three conditions.

• Arrival of a new stream: If a new stream arrives in the sys-
tem, its CoD is calculated. A cluster is selected such that CoC
= CoD. If the selected cluster is not free, a nearest free topo-

JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.6 (1-9)

6 N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–•••

Fig. 6. Swim lane diagram of proposed system.

logical ordered cluster is allocated. In addition, CoD of all the
other streams with low migration cost [38] is calculated again.
The streams whose CoD = CoC continue to run on the same
cluster. On the other hand, resources of streams whose CoD �=
CoC (called shifting-streams) are virtually added to free pool
list. Note that, here, resources are not actually released by
shifting-streams until CoD of all the streams is calculated. This
reduces waiting time. Once CoD of every stream in the sys-
tem is calculated, list of free resources is updated clusters are
formed with the help of SOM. The newly created clusters are
allocated to shifting-streams as described in Section 3.2.2.

• On Expiry of time period ‘r’: As illustrated in Fig. 1, the CoD
is calculated after ‘r’ time units. The stream is migrated to ap-
propriate cluster if migration cost is low.

• Completion of any ongoing job: There are other jobs running
on a cloud data center in addition to the streams. On com-
pletion of any such ongoing job, its resources are released and
added to the free pool. These resources are then used during
next cluster formation process.

Therefore, the proposed system allocates appropriate resources
to big data stream based on its 4Vs. It migrates the stream to a
new cluster whenever required for reducing execution time.

4. Experimental analysis

This section evaluates the proposed system experimentally. The
two steps of the proposed system are evaluated separately in Sec-
tion 4.1 and 4.2 respectively.

4.1. Experimental evaluation of Step 1 of proposed system

In order to generate a big data stream, four datasets are ini-
tially taken. The first dataset [44] is an image dataset consisting
of 68,040 images. The second dataset [45] is an audio set which
is a collection of 1,059 music tracks. The third dataset [46] is a
surveillance video dataset consisting 29 hours of video. The fourth
dataset [47] is a textual dataset consisting of 8000000 vocabulary
words. Using these four datasets, a database is created such that:

• It consists of 14% image data, 23% of audio data, 24% of video
data and 39% of text data.

Fig. 7. Prediction accuracy of proposed system. (a) Predicting data volume; (b) Pre-
dicting data velocity.

• The image data is added in the database such that its volume
is low initially and it increases towards the end of database
(as shown by red colored line in Fig. 7(a)).

• The volume of audio data in the database is high initially and
it decreases towards the end of database (as shown by purple
colored line in Fig. 7(a)).

• The volume of video data in the database first decreases and
then increases (as shown by blue colored line in Fig. 7(a)).

• The volume of text data remains almost constant throughout
the database (as shown by orange colored line in Fig. 7(a)).

The created database is carefully fed to the system in form of
a stream such that the velocities of image, audio, video and text
data follow the following pattern:

• Velocity of image data first decreases and then increases with
time (as shown by red colored line in Fig. 7(b)) such that it
forms 18% of the overall velocity of the stream.

• Velocity of audio data decreases with time (as shown by pur-
ple colored line in Fig. 7(b)) such that it forms 26% of the
overall velocity of the stream.

• Velocity of video data increases with time (as shown by blue
colored line in Fig. 7(b)) such that it forms 21% of the overall
velocity of the stream.

• Velocity of text data remains almost constant with time (as
shown by red colored line in Fig. 7(b)) such that it forms 35%
of the overall velocity of the stream.

It can be noted here that the stream exhibits stochasticity in
way that the volume and velocity of various data types varies with
time. Therefore, a stream is generated such that actual volume and

JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.7 (1-9)

N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–••• 7

Table 1
Mean absolute prediction error.

Volume Velocity

Volume % MAPE Velocity % MAPE

Image data 14% 0.214 18% 0.235
Audio data 23% 0.183 26% 0.164
Video data 24% 0.176 21% 0.179
Text data 39% 0.115 35% 0.111

velocity at particular time instance is known to us. These actual
values are compared with values predicted by the system. The pre-
diction results are shown in Fig. 7(a)–(b). Here, the first step of
proposed system, which predicts the volume and velocity of im-
age, audio, video, and text data, is implemented in Matlab. The
experiment uses block size of 128 MB, and a constant sampling
rate of 0.33 samples/min (or one sample after every 3 minutes).

4.1.1. Discussion of results
It can be observed from Fig. 7(a)–(b) that the difference be-

tween actual and predicted values is low. In addition, Mean Ab-
solute Prediction Error (MAPE) is calculated in each case which is
summarized in Table 1.

It can be observed from Table 1 that MAPE decreases with the
increase in data volume. For example, as explained in Section 4.1.1,
the stream consists of 14% of image data, 23% of audio data, 24%
of video data and 39% of text data. This implies that the volume of
image data is lowest. On the other hand, the MAPE for predicting
volume of image, audio, video and text data is 0.214, 0.183, 0.176,
and 0.115 respectively. This implies that MAPE is highest for image
data. Hence, MAPE is lower for higher data volume and increases
with the decrease in data volume. Similar trend is observed in the
case of data velocity. This is in accordance with the Law of Large
Numbers which states that error decreases with the increase in
data size.

It can be concluded from the above discussion that the pro-
posed system efficiently predicts volume and velocity of image, au-
dio, video, and text data. Moreover, since the CoD vector depends
upon the predicted volume and velocity, therefore, the accuracy of
CoD is implied.

4.2. Experimental evaluation of Step 2 of proposed system

This section compares the proposed system with a similar QoS
based resource management system proposed by Sandhu and Sood
[5]. For experimental analysis, 10 big data streams are generated.
The procedure of stream generation is same as that explained in
section 4.1. The percentage of volume and velocity is varied to gen-
erate these 10 different big data streams as summarized in Table 2.
(Note that, in Table 2, I, A, V and T stands for image, audio, video
and text data respectively). One stream is fed to the system after
every ten minutes.

Virtual Machines (VMs) are selected from Amazon Elastic Com-
pute Cloud (EC2) instances using QoS based and proposed system.
VMs take the generated streams as input and run Alon–Matias–
Szegedy (AMS) algorithm [48] on each stream. AMS is used to
determine the frequencies of distinct elements in a stream. In an
experiment of two hours, the resource utilization, resource avail-
ability of cloud resource is measured as shown in Fig. 8(a) and 8(b)
respectively. In addition, the overall execution latency and response
time of all the streams is aggregated and shown in Fig. 8(c) and
8(d) respectively.

4.2.1. Discussion of results
As stated in Section 2, in QoS based method proposed in [5],

the processing power, GPU power, RAM and size of input data

Table 2
Percentage of volume and velocity in generated streams.

Volume % Velocity %

I A V T I A V T

Stream 1 14 23 24 39 18 26 21 35
Stream 2 17 22 25 36 34 25 20 21
Stream 3 26 18 32 24 30 21 23 26
Stream 4 21 17 29 33 19 33 21 27
Stream 5 15 34 23 28 21 23 30 26
Stream 6 25 25 25 25 25 25 25 25
Stream 7 32 42 26 0 24 40 36 0
Stream 8 36 33 0 31 27 35 0 38
Stream 9 24 0 30 46 39 0 29 32
Stream 10 0 29 34 37 0 41 28 31

are provided by user. These user requirements are used to allo-
cate resources to the incoming request. As stated in Section 1, user
requirements depend upon data characteristics which are usually
unknown to the user in case of big data streams. Therefore, in QoS
based method, user may not be able to determine appropriate re-
sources for big data stream. Moreover, the stream is run on same
resources for whole time period. On the other hand, the proposed
method predicts the 4Vs of the stream and determines the ap-
propriate resources accordingly. The allocation is changed with the
changing characteristics of data in a stream. It is due this fact that
resource utilization is higher in case of proposed system as com-
pared to QoS based method as shown in Fig. 8(a).

Furthermore, both QoS based and proposed system uses SOM
for cluster allocation. In both the cases, a nearest topological or-
dered cluster is immediately allocated, if the selected cluster is
not available due to which waiting time is reduced. Hence, there
is not much difference in the resource availability as shown in
Fig. 8(b).

Fig. 8(c) shows the comparison of execution latency between
the QoS based and proposed system. In case of QoS based method,
the execution latency remains almost same with only a slight in-
crease towards the end of experiment. This is due to the fact
that as more streams are added to the system, the probability
of non-availability of required cluster increases (it may be already
occupied by some other stream). Therefore, time is spent in find-
ing the nearest topological ordered cluster. On the other hand, the
proposed system shows higher execution latency in the beginning.
This is because CoD for the stream is calculated before it can be
allocated an appropriate cluster. Once appropriate cluster is allo-
cated, the execution latency is decreases because suitable resources
can process the stream at faster pace. Moreover, it is observed from
Fig. 8(c) that there are periodic peaks after every 10 minutes since
a new stream is added in the system after 10 minutes. CoD of
new stream and all the other streams is calculated again which
increases the execution latency. Inspite of this, the overall execu-
tion latency of the proposed system is less than the QoS based
method.

Fig. 8(d) shows the comparison of response time between the
QoS based and proposed system. It can be observed that the re-
sponse time for proposed system remains almost same throughout
the experiment. This is because whenever characteristics of data
in the stream changes, it is migrated to a more suitable cluster
in the proposed system. This leads to a constant response time. On
the other hand, response time in QoS based method increases with
time since the stream is run on same resources for whole time pe-
riod irrespective of the data characteristics.

5. Conclusion

In this paper, an efficient resource allocation system for big
data streams is proposed. The proposed system allocates resources
to stream based upon its data characteristics. The allocation is

JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.8 (1-9)

8 N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–•••

Fig. 8. Performance comparison of QoS based system and proposed system. (a) Com-
parison of resource utilization; (b) Comparison of resource availability; (c) Compar-
ison of execution latency; (d) Comparison of response time.

changed whenever the data characteristics change. This mecha-
nism results in a constant response time for a stream. Moreover,
the waiting time for stream is reduced by topological ordering
of clusters formed by SOM. The experimental results show that
the proposed system shows a performance edge over other similar
technique.

References

[1] Gartner Inc., What is big data?, in: Gartner IT Glossary, 2013 [Online]. Available
http://www.gartner.com/it-glossary/big-data (accessed 12 December 2016).

[2] N. Kaur, S.K. Sood, An energy-efficient architecture for the Internet of Things
(IoT), IEEE Syst. J. (2015) 1–10.

[3] I.A.T. Hashem, I. Yaqoob, N. Badrul Anuar, S. Mokhtar, A. Gani, S. Ullah Khan,
The rise of ‘Big Data’ on cloud computing: review and open research issues,
Inf. Syst. 47 (2015) 98–115.

[4] B.G. Batista, C. Henrique, G. Ferreira, D. Costa, M. Segura, D. Machado, L. Filho,
M.L. Maciel, A QoS-driven approach for cloud computing addressing attributes
of performance and security, Future Gener. Comput. Syst. 68 (2017) 260–274.

[5] R. Sandhu, S.K. Sood, Scheduling of big data applications on distributed cloud
based on QoS parameters, Clust. Comput. 18 (2) (2014) 817–828.

[6] Z. Zheng, X. Wu, Y. Zhang, M.R. Lyu, J. Wang, QoS Ranking prediction for cloud
services, IEEE Trans. Parallel Distrib. Syst. 24 (6) (2013) 1213–1222.

[7] N. Ammu, M. Irfanuddin, Big data challenges, Int. J. Adv. Trends Comput. Sci.
Eng. 2 (1) (2013) 613–615.

[8] S. Pumma, T. Achalakul, L. Xiaorong, Automatic VM allocation for scientific
application, in: Proceedings of the International Conference on Parallel and Dis-
tributed Systems, ICPADS, 2012, pp. 828–833.

[9] S. Singh, I. Chana, Cloud resource provisioning: survey, status and future re-
search directions, Knowl. Inf. Syst. 49 (3) (2016) 1005–1069.

[10] S. Singh, I. Chana, Q-aware: quality of service based cloud resource provision-
ing, Comput. Electr. Eng. 47 (2015) 138–160.

[11] J. Zhang, H. Huang, X. Wang, Resource provision algorithms in cloud comput-
ing: a survey, J. Netw. Comput. Appl. 64 (2016) 23–42.

[12] J. Rao, Y. Wei, J. Gong, C.Z. Xu, QoS guarantees and service differentiation
for dynamic cloud applications, IEEE Trans. Netw. Serv. Manag. 10 (1) (2013)
43–55.

[13] W.-J. Wang, Y.-S. Chang, W.-T. Lo, Y.-K. Lee, Adaptive scheduling for parallel
tasks with QoS satisfaction for hybrid cloud environments, J. Supercomput.
66 (2) (2013) 783–811.

[14] Z. Zhu, S. Li, X. Chen, Design QoS-aware multi-path provisioning strategies
for efficient cloud-assisted SVC video streaming to heterogeneous clients, IEEE
Trans. Multimed. 15 (4) (2013) 758–768.

[15] W.-H. Hsu, C.-H. Lo, QoS/QoE mapping and adjustment model in the cloud-
based multimedia infrastructure, IEEE Syst. J. 8 (1) (2014) 247–255.

[16] J.M. Chang, QoS-aware data replication for data-intensive applications in cloud
computing systems, IEEE Trans. Cloud Comput. 1 (1) (2013) 101–115.

[17] S. Misra, S. Das, M. Khatua, M.S. Obaidat, QoS-guaranteed bandwidth shifting
and redistribution in mobile cloud environment, IEEE Trans. Cloud Comput.
2 (2) (2014) 181–193.

[18] K.T. Chen, Y.C. Chang, H.J. Hsu, D.Y. Chen, C.Y. Huang, C.H. Hsu, On the quality of
service of cloud gaming systems, IEEE Trans. Multimed. 16 (2) (2014) 480–495.

[19] S.K. Sood, Function points-based resource prediction in cloud computing, Con-
curr. Comput. Pract. Exp. 28 (2016) 2781–2794.

[20] S.K. Sood, R. Sandhu, Matrix based proactive resource provisioning in mobile
cloud environment, Simul. Model. Pract. Theory 50 (2015) 83–95.

[21] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, J. Kołodziej, J. Kolodziej,
Resource-aware hybrid scheduling algorithm in heterogeneous distributed
computing, Future Gener. Comput. Syst. 51 (2015) 61–71.

[22] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H.S.-H. Chung, Y. Li, Cloud computing
resource scheduling and a survey of its evolutionary approaches, ACM Comput.
Surv. 47 (4) (2015) 1–33.

[23] A. Sfrent, F. Pop, Asymptotic scheduling for many task computing in Big Data
platforms, Inf. Sci. (Ny) 319 (2015) 71–91.

[24] Agile data integration platforms – cloud-based (iPaaS) and on-premise soft-
ware |Scribe software, [Online]. Available http://www.scribesoft.com/ (accessed
9 December 2016).

[25] C. Olston, S. Seth, C. Tian, T. ZiCornell, X. Wang, G. Chiou, L. Chitnis, F. Liu,
Y. Han, M. Larsson, A. Neumann, V.B.N. Rao, V. Sankarasubramanian, Nova, in:
Proceedings of the 2011 International Conference on Management of Data, SIG-
MOD ’11, 2011, pp. 1081–1082.

[26] P. Bhatotia, A. Wieder, R. Rodrigues, U. a Acar, R. Pasquin, Incoop: MapReduce
for incremental computations, in: Proceedings of the 2nd ACM Symp. Cloud
Comput., SOCC ’11, 2011, pp. 1–14.

[27] L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing
platform, in: 2010 IEEE International Conference on Data Mining Workshops,
2010, pp. 170–177.

[28] Apache storm, [Online]. Available http://storm.apache.org/ (accessed 9 Decem-
ber 2016).

[29] Welcome to apache flume — apache flume, [Online]. Available http://flume.
apache.org/index.html (accessed 9 December 2016).

[30] D. Sun, G. Zhang, S. Yang, W. Zheng, S.U. Khan, K. Li, Re-stream: real-time
and energy-efficient resource scheduling in big data stream computing envi-
ronments, Inf. Sci. (Ny) 319 (2015) 95–112.

[31] R. Tolosana-Calasanz, J.Á. Bañares, C. Pham, O.F. Rana, Resource management
for bursty streams on multi-tenancy cloud environments, Future Gener. Com-
put. Syst. 55 (2016) 444–459.

http://www.gartner.com/it-glossary/big-data
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib32s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib32s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib33s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib33s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib33s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib34s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib34s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib34s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib35s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib35s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib36s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib36s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib37s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib37s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib38s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib38s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib38s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib39s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib39s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3130s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3130s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3131s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3131s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3132s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3132s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3132s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3133s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3133s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3133s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3134s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3134s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3134s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3135s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3135s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3136s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3136s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3137s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3137s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3137s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3138s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3138s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3139s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3139s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3230s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3230s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3231s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3231s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3231s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3232s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3232s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3232s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3233s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3233s1
http://www.scribesoft.com/
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3235s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3235s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3235s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3235s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3236s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3236s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3236s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3237s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3237s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3237s1
http://storm.apache.org/
http://flume.apache.org/index.html
http://flume.apache.org/index.html
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3330s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3330s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3330s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3331s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3331s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3331s1

JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.9 (1-9)

N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–••• 9

[32] M. Rahman, P. Graham, Responsive and efficient provisioning for multimedia
applications, Comput. Electr. Eng. 53 (2016) 458–468.

[33] Q. Zhang, Z. Chen, L.T. Yang, A nodes scheduling model based on Markov chain
prediction for big streaming data analysis, Int. J. Commun. Syst. 28 (9) (2015)
1610–1619.

[34] A. Castiglione, R. Pizzolante, A. De Santis, B. Carpentieri, A. Castiglione, F.
Palmieri, Cloud-based adaptive compression and secure management services
for 3D healthcare data, Future Gener. Comput. Syst. 43–44 (2015) 120–134.

[35] J. Peng, X. Zhi, X. Xie, Application type based resource allocation strategy in
cloud environment, Microprocess. Microsyst. (2016), http://dx.doi.org/10.1016/
j.micpro.2016.09.014.

[36] A.K. Baughman, R.J. Bogdany, C. McAvoy, R. Locke, B. O’Connell, C. Upton, Pre-
dictive cloud computing with big data: professional golf and tennis forecasting
[application notes], IEEE Comput. Intell. Mag. 10 (3) (2015) 62–76.

[37] A. Jain, E.Y. Chang, Adaptive sampling for sensor networks, in: Proceedings of
the 1st International Workshop on Data Management for Sensor Networks in
Conjunction with VLDB 2004, DMSN ’04, 2004, pp. 10–14.

[38] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, Cost of virtual machine live
migration in clouds: a performance evaluation, in: Lecture Notes in Computer
Science, in: LNCS, vol. 5931, 2009, pp. 254–265.

[39] A. Gandomi, M. Haider, Beyond the hype: big data concepts, methods, and an-
alytics, Int. J. Inf. Manag. 35 (2015) 137–144.

[40] J. Hirschberg, A. Hjalmarsson, N. Elhadad, ‘You’re as sick as you sound’: us-
ing computational approaches for modeling speaker state to gauge illness and
recovery, in: Advances in Speech Recognition, Springer US, Boston, MA, 2010,
pp. 305–322.

[41] H.A. Patil, ‘Cry Baby’: using spectrographic analysis to assess neonatal health
status from an infant’s Cry, in: Advances in Speech Recognition, Springer US,
Boston, MA, 2010, pp. 323–348.

[42] A. Rajaraman, J.D. Ullman, Bloom filter, in: Mining of Massive Datasets, first
edit, Cambridge University Press, 2014, pp. 116–118.

[43] G. Deodatis, M. Shinozuka, Auto-regressive model for nonstationary stochastic
processes, J. Eng. Mech. 114 (11) (1988) 1995–2012.

[44] UCI machine learning repository: corel image features data set, [Online]. Avail-
able https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features (accessed 13
December 2016).

[45] UCI machine learning repository: geographical original of music data
set, [Online]. Available https://archive.ics.uci.edu/ml/datasets/Geographical+
Original+of+Music (accessed 13 December 2016).

[46] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J.T. Lee, S. Mukherjee, J.K.
Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, M. Shah, C.
Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, B. Song, A. Fong, A.
Roy-Chowdhury, M. Desai, A large-scale benchmark dataset for event recogni-
tion in surveillance video, in: CVPR 2011, 2011, pp. 3153–3160.

[47] UCI machine learning repository: bag of words data set, [Online]. Avail-
able https://archive.ics.uci.edu/ml/datasets/Bag+of+Words (accessed 13 Decem-
ber 2016).

[48] A. Rajaraman, J.D. Ullman, Estimating moments, in: Mining of Massive Datasets,
first edit, Cambridge University Press, 2014, pp. 122–127.

http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3332s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3332s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3333s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3333s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3333s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3334s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3334s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3334s1
http://dx.doi.org/10.1016/j.micpro.2016.09.014
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3336s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3336s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3336s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3337s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3337s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3337s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3338s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3338s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3338s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3339s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3339s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3430s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3430s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3430s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3430s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3431s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3431s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3431s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3432s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3432s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3433s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3433s1
https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3438s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3438s1
http://dx.doi.org/10.1016/j.micpro.2016.09.014

	Efﬁcient Resource Management System Based on 4Vs of Big Data Streams
	1 Introduction
	2 Related work
	3 Proposed system
	3.1 Step 1: estimating data characteristics
	3.1.1 Variety determination
	3.1.2 Volume & velocity prediction using variability
	3.1.3 Calculating relative volume and velocity
	3.1.4 Efﬁcient representation of predicted 4Vs

	3.2 Resource management
	3.2.1 Dynamic cluster formation
	3.2.2 Dynamic cluster allocation

	3.3 Workﬂow of proposed method

	4 Experimental analysis
	4.1 Experimental evaluation of Step 1 of proposed system
	4.1.1 Discussion of results

	4.2 Experimental evaluation of Step 2 of proposed system
	4.2.1 Discussion of results

	5 Conclusion
	References

