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Big data streams are generated continuously at unprecedented speed by thousands of data sources. 
The analysis of such streams need cloud resources. Due to growth of big data over cloud, allocating 
appropriate cloud resources has emerged as a major research problem. The current methodologies 
allocate cloud resources based upon data characteristics. But due to random nature of data generation, the 
characteristics of data in big data streams are unknown. This poses difficulty in selecting and allocating 
appropriate resources to big data stream. Solving this problem, an efficient resource management system 
is proposed in this paper. The proposed system initially estimates the data characteristics of big data 
stream in terms of volume, velocity, variety and variability. The estimated values are expressed in terms 
of a vector called Characteristics of Data (CoD). On the other hand, clusters of cloud resources are created 
dynamically with the help of Self-Organizing Maps (SOM). SOM uses CoD to create and allocate cluster to 
big data stream. Moreover, the topological ordering of clusters formed by SOM is used to reduce waiting 
time. The proposed system is tested experimentally. The experimental results show that the proposed 
system not only efficiently predicts data characteristics but also effectively enhanced the performance of 
cloud resources.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Rapid development and adoption of smart objects in every 
sphere has amplified the prevalence of Internet of Things (IoT). The 
growing number of IoT devices has led to a drastic increase in data 
volume and data velocity. On the other hand, the heterogeneity of 
IoT devices enhances data variety. Consequently, IoT data is char-
acterized by volume, velocity and variety.

According to Gartner IT Glossary [1], big data is defined as:

“Big data is high-volume, high-velocity and/or high-variety informa-
tion assets that demand cost-effective, innovative forms of informa-
tion processing that enable enhanced insight, decision making, and 
process automation.”

With respect to the above definition, it can be stated that the data 
harvested by IoT devices has entered big data era.

Furthermore, in a smart environment, some of the IoT devices 
are periodic while the others are event triggered [2]. The peri-
odic devices generate constant amount of data at regular intervals, 
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thereby generating big data streams. On the other hand, event trig-
gered devices are activated when certain event is encountered. The 
erratic nature of trigger event varies data flow rate. The variation 
in data flow rate is termed as variability. Therefore, in addition to 
volume, velocity and variety, IoT data satisfies another dimension 
of big data called variability.

The IoT devices can generate data stochastically. For example, 
one event triggered device may, in turn, trigger other IoT devices. 
In such a case, it is difficult to determine how many devices will 
be activated and how much data will be generated. Such stochastic 
nature leads to the generation of big data streams with unknown 
characteristics. Here, data characteristics imply volume, velocity, 
variety, and variability of data.

Apart from the IoT devices, big data streams are generated by 
other applications too, such as social media, click-streams, business 
transactions, GPS systems, and sensor networks. Intuitively, these 
applications generate huge volumes of data at high velocity. More-
over, data from these sources consists of images, video, audio and 
text which contribute to data variety. The trending topics on social 
media and daily/seasonal loads enhance variability. Therefore, big 
data streams from these sources are characterized by 4Vs: Volume, 
Velocity, Variety and Variability. It can be noted here that big data 
streams from most of the applications are generated randomly and 
therefore they too have unknown characteristics.

The incessant and unprecedented speed of big data streams es-
calates the problem of its real time analysis. Conventionally, cloud 
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computing is used to tackle this issue. But with the growth of big 
data over cloud [3], selecting appropriate cloud resources for such 
real time analysis has emerged as major research problem. The cur-
rent practices [4–6] allocates cloud nodes based upon user-defined 
memory size, GPU power and processing power. For such an al-
location, the user must be acquainted with characteristics of data 
(or the 4Vs of data). For example, the user selects higher memory 
size for higher volume data; higher GPU power for video streams 
and higher processing power for higher velocity and higher vari-
ability. Alternatively, user selects cloud nodes based upon the 4Vs 
of data stream. Such resource selection is limited by the expertise 
of user. Moreover, even if the user is expert, the knowledge of data 
characteristics is necessary.

As stated earlier, the 4Vs of incoming big data streams are un-
known to the user due to random data generation by IoT devices 
and other applications. Therefore, user is unable to determine ap-
propriate cloud resources for real-time data analysis.

In order to solve this problem, an efficient resource manage-
ment system is proposed in this paper. The proposed system ini-
tially estimates the characteristics of data which are expected to 
arrive in next time interval. In order to estimate data character-
istics, all the 4Vs are taken on-board. Later, the 4Vs are used to 
dynamically create and allocate clusters of free cloud resources 
with the help of Self-Organizing Maps (SOM). The clusters formed 
by SOM are created in topological ordered fashion such that more 
is the relationship among clusters, closer is their ordering. The pro-
posed method exploits such topological ordering to reduce waiting 
time.

The rest of the paper is organized as follows. Section 2 investi-
gates the related work. Section 3 presents the detailed description 
of proposed system. Section 4 provides experimental setup, results 
and discussion. Lastly, Section 5 concludes the paper.

2. Related work

The computing resources offered by traditional computing 
paradigms are unable to handle large volumes of complex data [7]. 
As a result, cloud computing emerged as a powerful technology 
which offers on-demand and unlimited resources. Pumma, Acha-
lakul and Li [8] posited that suitable amount of cloud resources 
should be determined prior to the start of execution. Consequently, 
literature finds vast amounts of work on resource prediction and 
resource provisioning algorithms [9–11]. In addition, there are 
many articles which are focused on specific cloud applications [6,
12–20]. Nevertheless, the work on big data application scheduling 
is still sparse.

The growth of big data over cloud [3] ushers the issue of se-
lecting appropriate cloud resources. In 2015, Vasile et al. [21]
emphasized that dynamic resource provisioning is a challenging 
issue in big data application scheduling. The authors in Ref. [22]
proposed various research directions for real time, distributed, dy-
namic, adaptive and multi-objective scheduling of big data appli-
cations. Sfrent and Pop [23] accentuated that efficient resource 
scheduling algorithm plays an essential role for big data applica-
tions. They found that best resource scheduling algorithm can be 
discovered under certain conditions.

In 2014, Sandhu and Sood [5] proposed a QoS based framework 
to determine and allocate optimal resources to big data applica-
tions over distributed cloud. In the proposed framework, the func-
tional and QoS requirements are provided by the user. The func-
tional requirements include processing power, GPU power, RAM 
and size of input data. On the other hand, the QoS requirements 
include response time, quality of output data and visualization of 
results. Based on functional and QoS requirements, the required 
cloud cluster is determined using Naïve Bayes algorithm. Later, the 
proposed framework uses SOM to allocate cloud resources to big 

Fig. 1. Overview of the proposed system.

data application. This framework is efficient only if the functional 
requirements are known to the user.

Streaming big data applications escalated the need and prob-
lem of real time data processing. Various tools such as Scribe [24], 
Nova [25], Incoop [26], Apache Simple Scalable Streaming System 
(S4) [27], Apache Storm [28], and Apache Flume [29] emerged as 
a solution to streaming big data problem. These tools focused on 
processing big data streams but ignored the resource scheduling 
strategy. To bridge this gap, Sun et al. [30] proposed a graph based 
method. The proposed method schedules resources held by these 
tools such that energy-efficiency is enhanced without effecting the 
response time.

Furthermore, the authors in [31] proposed a method to pro-
cesses data streams such that the profit of cloud provider is max-
imized. In 2016, Rahman and Graham [32] developed a priority 
based method for multimedia data processing. But the methods 
proposed in [31] and [32] are static hybrid algorithms.

The authors in [33] argued that it is necessary to predict the 
volume of streaming big data for efficient node allocation. They 
efficiently predicted the size of big data using Markov chain and 
assigned nodes for data processing accordingly. But the model does 
not consider the velocity, variety and variability of big data for re-
source allocation. In 2014, Castiglione et al. [34] emphasized that 
variability at cloud data center effects the cloud resource alloca-
tion. In 2016, Peng et al. [35] presented a strategy to allocate 
cloud resources to the incoming request based upon its applica-
tion type (data variety). In 2015, Baughman et al. [36] illustrated 
that predicting the velocity of incoming big data request is crucial 
for efficient provisioning of cloud resources. From these studies, it 
is concluded the 4Vs of streaming big data are important parame-
ters for cloud resource allocation.

To the best of our knowledge, none of the aforementioned stud-
ies considered the 4Vs of the streaming data for efficient cloud 
resource allocation. Therefore, the prime contribution of this paper 
is to exploit various dimensions of big data streams for efficient 
resource allocation.

3. Proposed system

The proposed system is aimed to allocate appropriate resources 
to big data stream based upon its 4Vs. To achieve the required goal, 
the proposed system works in two steps. The first step initially 
extracts small chunks of data from incoming stream as shown in 
Fig. 1. The chunk size is a small multiple of default block size of 
underlying storage system (such as HDFS which has default block 
size of 64 MB). Limiting chunk size to the size of few blocks re-
duces the overhead to read and analyze data. The selected data 
chunk is analyzed to estimate the volume and velocity of various 
varieties of data in the stream. While estimating these values, the 
variability of data is considered. In this way, all the 4Vs of big data 
stream are covered by the proposed system. The estimated values 
are expressed in terms of a vector called Characteristics of Data 
(CoD). The second step uses CoD to dynamically create and allo-
cate clusters of free cloud resources using SOM.

After ‘r’ time units, another chunk is selected using adaptive 
sampling technique [37] as shown in Fig. 1. Here, ‘r’ depends upon 
the sampling rate. The initial sampling rate is selected according 
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Fig. 2. Estimating data characteristics.

to Nyquist–Shannon sampling theorem (i.e. sampling rate is twice 
the frequency of data arrival). This mechanism allows the system 
to capture variability of a newly arrived stream at an early stage 
and thereby allocate appropriate cluster. Later, adaptive sampling 
technique adjusts the sampling rate autonomously. For adjusting 
sampling rate, migration overhead [38] is considered. The value 
of ‘r’ is increased if migration overhead is high and decreased if 
execution time is high. The sampled data chunk is analyzed again 
and resources are allocated using the above mentioned steps. The 
detailed description of the two steps is given in the subsections 
that follow.

3.1. Step 1: estimating data characteristics

For estimating data characteristics, the data chunk is analyzed 
in four stages as shown in Fig. 2. In the first stage, data variety is 
determined. The second stage estimates the volume and velocity 
of data using data variability. The third stage is meant to overcome 
the lack standard values of volume and variety which define big 
data. In other words, given a value of data volume and velocity, 
it cannot be determined whether it is big data or not. In order to 
tackle this issue, the third step compares the values with other re-
quest arriving at cloud and calculates relative volume and velocity. 
The final stage is meant for efficient representation of relative val-
ues. The detailed explanation of these stages is given below.

3.1.1. Variety determination
Broadly, big data streams consist of text data, image data, audio 

data, and video data. This classification of data variety is geared by 
the available types of big data analytics. Big data analytics refers to 
the techniques used for unlocking potential intelligence from data. 
There are mainly four types of big data analytics [39], namely, text 
analytics, image analytics, audio analytics, and video content an-
alytics. Text analytics extract information from textual data such 
as emails, news, social network feeds, log files, business transac-
tions and many more. Image analytics is important in wide range 
of big data applications. Specifically, medical and geospatial images 
need dedicated and rigorous image analytic algorithms to detect 
analogies and anomalies. Audio analytics is used to extract infor-
mation from unstructured audio. For example, analysis of millions 
of recorded calls at call centers, diagnosis and treatment of speech 
related medical conditions [40], analysis of infant cries [41], and 
other social media audios. Video content analytics is meant to ex-
tract useful information from video streams. Video data is basically 
a sequence of images, arriving at a certain frequency, usually ac-
companied by audio and sometimes by text subtitles. Therefore, it 
can be said that video analytics is a more rigorous and complex 
form of audio, image and text analytics. With the prevalence of 
closed-circuit television (CCTV) and video sharing websites, video 
analytics is gaining momentum.

The variety determination stage uses bloom filter [42]. Bloom 
filter allows the stream elements that meet a criterion to pass 

Algorithm 1 Bloom filter.
Input: Array BF [n], Set S , Hash functions h1,h2, . . . . . . ,hk
Step 1: Initialize, BF [1]. . . . . . BF [n] = 0
Step 2: for each key yiε S
Step 2.1: Calculate h1(yi), . . . . . . ,hk(yi)

Step 2.2: Set BF [h j(yi)] = 1, 1 ≤ j ≤ k
Step 3: for each stream element ′e′ arriving at the filter
Step 3.1: Calculate h1(e), . . . . . . ,hk(e)
Step 3.2: if BF [h j(e)] = 1 for all j
Step 3.2.1: Allow ′e′ to pass

Step 4: Exit

Fig. 3. Working of bloom filter with n = 13, m = 3 and k = 2.

through, rejecting the other ones. It consists of (i) an array of n
bits, all initialized to 0’s; (ii) a collection of k hash functions h1, 
h2, . . . , hk; (iii) a set S of m key values. Each hash function maps 
key values to n buckets, corresponding to n bits of array. The pur-
pose of bloom filter is to allow stream elements which are in S
while rejecting the other ones.

If p is the acceptable false positive rate then the values of n
and k are calculated using Eqs. (1)–(2).

n = ceil

(−m ∗ ln(p)

[ln(2)]2
)

(1)

k = round

(
ln(2) ∗ n

m

)
(2)

The working of bloom filter is given by Algorithm 1. An ex-
ample of its working is shown in Fig. 3. Here, there are three key 
values X, Y , Z . Initially these values are hashed using the two hash 
functions and the corresponding bits are set to 1. When a stream 
element W is encountered, the two hash functions are calculated 
again. It can be observed that W results in a hash value which is 
‘0’. Therefore, W is not allowed to pass through.

In the proposed system, four bloom filters are used as shown 
in Fig. 2. The first filter allows only images to pass and blocks the 
data of other varieties. Similarly, the second, third and fourth filter 
respectively allows audio, video and text data to pass. The imple-
mentation of all bloom filters is same except for the data type.

Here, set S of a particular bloom filter consists of all the possi-
ble data formats. For example, set S in the first filter comprises of 
all the image formats such as jpeg, png, etc. The set S in the sec-
ond filter consists of all the audio formats such as mp3, wav, aiff, 
etc. Similarly, the set S of the other two filters are constructed. 
Hence, the value m is equal to the total number of formats in S . 
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The values of n and k are calculated using Eq. (1) and Eq. (2) re-
spectively. The hash functions are selected such that every format 
hashes to one unique element of the array. The data which is al-
lowed to pass is stored in its respective virtual bucket as shown in 
Fig. 2. Therefore, there are four buckets corresponding to the four 
filters (or four data types). These four buckets are initially empty. 
Data is added to them as it passes through the filter.

The absolute value of data volume in the bucket and the ve-
locity at which it is added is calculated. Let ρt (I) and ut(I) be
absolute volume and velocity of image data at tth time instance. 
These values are initiated to zero. Every time image data is added 
to its respective bucket, the volume and velocity values are up-
dated using Eq. (3) and Eq. (4). Here, δ denotes the volume of data 
passed through the filter at one time instance.

ρt(I) = ρt(I) + δ (3)

ut(I) = ut(I) + 1 (4)

Similarly, the volume ρt(A) of audio data, velocity ut(A) of 
audio data, volume ρt(V ) of video data, velocity ut(V ) of video 
data, volume ρt(T ) of text data and velocity ut(T ) of text data 
is calculated from their respective buckets. Using these values, the 
volume and velocity of data which is expected to arrive at (t+1)th 
instance is predicted at second stage of estimating data character-
istics.

3.1.2. Volume & velocity prediction using variability
Data flow can be inconsistent with periodic peaks, or when 

something is trending on social media. Such variability leads to 
generation of data in high volume and at high velocity during a 
particular time period. Therefore, variability plays a significant role 
while estimating volume and velocity of data which is expected to 
arrive in next time interval.

In order to predict volume and velocity by considering variabil-
ity as an important factor, auto-regressive model [43] is used as 
shown in Fig. 2. Auto-regressive model is remarkably flexible in 
handling a wide range of time-varying processes. It forecasts the 
value of variable using a linear combination of predictors. It oper-
ates under the premise that past values have significant effect on 
future trends. Consequently, considering variability during predic-
tion is an inherent property of auto-regressive model.

Let ρ ′
t+1(I) and u′

t+1(I) denote the predicted values of volume 
and velocity of image data at (t + 1)th time instance. Using auto-
regressive model, these values are given by Eq. (5) and Eq. (6)
respectively.

ρ ′
t+1(I) = α1ρt(I) + α2ρt−1(I) + · · · + αqρt−q+1(I) (5)

u′
t+1(I) = β1ut(I) + β2ut(I) + · · · + βqut−q+1(I) (6)

where

αi = cov(ρt(I),ρt−i(I))

var(ρt(I))

and

βi = cov(ut(I),ut−i(I))

var(ut(I))

Here cov( ) and var( ) stands for co-variance and variance re-
spectively. Similarly, the predicted volume and velocity of audio, 
video and text data is calculated using auto-regressive model. The 
equations for their prediction are same as Eq. (5) and Eq. (6) with 
the only exception of data type, so they are omitted here.

3.1.3. Calculating relative volume and velocity
As stated earlier, there are no standard values which define big 

data. Therefore, the predicted values of volume and velocity in sec-
ond stage are compared with other requests arriving on cloud data 
center. Such comparison allows the system to identify how intense 
is the volume and velocity of incoming big data stream. The values 
obtained after comparison are called relative volume and velocity. 
The calculation for relative volume and velocity of image data is 
discussed below. The calculation for audio, video and text data are 
similar with the only change of data type.

The relative volume and velocity of image data is calculated 
using Eq. (7) and Eq. (8). Here, max(ρt(I)) and max(ut(I)) are re-
spectively the maximum volume and velocity of image data among 
all the streams arriving at the system during time span ‘t ’.

ρ ′′
t+1(I) = round

(
ρ ′
t+1(I)

max(ρt)
,1

)
(7)

u′′
t+1(I) = round

(
u′
t+1(I)

max(ut)
,1

)
(8)

Here, the function round(num, num_digit) rounds the number 
“num” to “num_digit” number of decimal places. Therefore, in 
Eqs. (7)–(8), the relative volume and velocity is rounded to one 
decimal place.

Furthermore, the big data stream whose volume is equal to 
max(ρt(I)), will have its relative volume equal to one. This implies 
that the maximum value for relative volume is one. Intuitively, the 
lowest value is zero. Therefore, Eq. (7) will result in the value in 
the range [0, 1]. Moreover, since the value is rounded to one dec-
imal place, so {0, 0.1, 0.2, . . . , 0.9, 1} is set of possible values of 
relative volume. Similar is the case for relative velocity.

3.1.4. Efficient representation of predicted 4Vs
After predicting the 4Vs, it is necessary to represent the val-

ues in a form which can be efficiently used to allocate appropriate 
cloud resources. To achieve this goal, initially, the intensity of im-
age data ϕ(I) is calculated by using Eq. (9).

ϕ(I) = ρ ′′
t+1(I) ∗ u′′

t+1(I) (9)

The intensities of audio, video and text data are calculated cor-
respondingly. It can be noted that the intensity lies in the range 
of 0 and 1, both values inclusive. This is due to the fact that both 
ρ ′′
t+1( ) and u′′

t+1( ) lie in the range [0, 1].
After obtaining intensities of image, audio, video and text data, 

they are simply represented in the form Characteristics of Data 
(CoD) vector. CoD is defined as

Definition 1 (Characteristics of Data (CoD)). If A = {0, 0.1, 0.2, . . . ,
0.9, 1} and ϕ(I), ϕ(A), ϕ(V ) and ϕ(T ) denote the intensities of 
image, audio, video and text data respectively, of big data stream, 
then Characteristics of Data is defined by a vector (Q 1, Q 2, Q 3, Q 4), 
where Q i ∈ A and Q 1 = ϕ(I), Q 2 = ϕ(A), Q 3 = ϕ(V ), and Q 4 =
ϕ(T ). In other words, CoD = (ϕ(I), ϕ(A), ϕ(V ),ϕ(T )).

Therefore, the first step takes a chuck of stream, estimates its 
4Vs, and represents it in the form of CoD vectors. These vectors 
are used as input to the second step of proposed system.

3.2. Resource management

The second step works in two stages. First stage forms dynamic 
clusters of cloud resources while the second stage allocates an ap-
propriate cluster to big data stream. The detailed explanation of 
these two stages can be given in the subsections that follow.
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Fig. 4. Input and output layer of SOM.

3.2.1. Dynamic cluster formation
Dynamic clusters are formed with the help of SOM. SOM is one 

of the unsupervised neural network learning techniques for cluster 
analysis. It consists of an input layer and an output layer as shown 
in Fig. 4. The input layer consists of input vectors while the output 
layer consists of output vectors. Note that, for simplicity, only few 
vectors are shown in Fig. 4. Weights are assigned to edges moving 
from input to output layer.

The output vectors in SOM are represented by neurons. These 
neurons are arranged on a flat grid in topological ordered fashion. 
Fig. 5(a) shows output neurons as squares. It can be observed from 
the figure that the squares with different shades of red are lying 
towards left of the grid. Similarly, green colored neurons are ly-
ing at top right corner of the grid. Similar is the case with blue 
colored neurons. This color coding represents their topological or-
dering. In other words, the neurons with similar color coding are 
more closely related to one another. Furthermore, the input vec-
tors before clustering is done by SOM are shown by grey colored 
circles in Fig. 5(a). They are clustered such that the topological or-
dering is preserved as shown in Fig. 5(b). It can be observed From 
Fig. 5(b) that the input vectors move closer to one of the output 
vector. The closer input vectors are added to a single cluster (as 
shown by color coding in Fig. 5(b)). In this way, the number of re-
sources in a cluster is autonomously decided by SOM. It can also 
be observed that the clusters, hence formed, preserve the topolog-
ical ordering of output vectors.

In the proposed system, CoD vectors are output vectors while 
the vectors corresponding to cloud resources are input vectors (as 
shown in Fig. 4). The input vectors are clustered by SOM using 
Procedure 1. The procedure starts with the initialization of weights 
and learning factor η. The learning factor defines the speed with 
which neural network learns. It is initialized to a value slightly 
lower than 1 which decreases monotonically with the passage of 
time. This implies that initially SOM learns quickly and later the 
speed of learning is decreased. After initialization, SOM randomly 
chooses one of the resource vectors (Si ) and finds its distance from 
each CoD vector. The CoD vector (C J ) with minimum distance is 
the winning vector. Therefore, resource Si is allocated to stream 
with CoD C J . This process is repeated for every resource. All the 
resources whose winning vector is C J are said to be in one cluster.

Furthermore, the clusters formed using SOM are identified by 
using a parameter called Characteristics of Cluster (CoC). CoC can 
be formally defined as

Definition 2 (Characteristics of Cluster (CoC)). If A = {0, 0.1, 0.2, . . . ,
0.9, 1} and CoD = (Q 1, Q 2, Q 3, Q 4) is the winning output vector 
for the resources in cluster, then Characteristics of Cluster is de-
fined by a vector (R1, R2, R3, R4), where Ri ∈ A and R1 = Q 1, R2 =
Q 2, R3 = Q 3, R4 = Q 4.

In other words, if C J is the winning CoD vector for the re-
sources in cluster ‘i’, then CoC of cluster ‘i’ is equal to C J .

3.2.2. Dynamic cluster allocation
Once clusters are formed, their allocation is a simple process. 

Initially, a cluster with CoC = CoD formed by big data stream is se-
lected for allocation. If the selected cluster has enough resources to 

Fig. 5. Dynamic cluster formation using SOM. (a) Topological ordered output vectors; 
(b) Clustering of input vectors such that topological ordering is preserved.

process the stream, then it is allocated. Otherwise, a nearest topo-
logical ordered cluster having enough resources is searched and 
allocated. Such a scheme allows the streams to avoid waiting for 
the respective cluster to get free. Therefore, the waiting time is re-
duced. Here, it can be noted that whole of the big data stream 
converge at the same allocated cluster.

Procedure 1 Dynamic clustering by SOM.
1. Initialize weights from inputs to outputs to a small random value.
2. Assign value slightly less than 1 to the learning factor η.
3. Repeat steps 3 to 9 while computation bounds are not exceeded.
4. For each input vector S i , repeat steps 6 to 8.
5. For each output neuron j, calculate square of Euclidean distance of S as

D( j) =
q∑

k=1

(S ik − W jk)
2

6. Select J such that D( J ) is minimum.
7. Set CoC(S i) = CoD(C J )

8. Update weights of all topological neighbors of J such that

W jk(t + 1) = (
1− η(t)

)
W jk(t) + η(t)Sk

9. Decrement η monotonically
10. Output the virtual clusters with their respective CoC.

3.3. Workflow of proposed method

The detailed workflow of proposed system is shown by hor-
izontal swim lane diagram in Fig. 6. As shown in diagram, the 
system executes its two steps in close co-ordination in following 
three conditions.

• Arrival of a new stream: If a new stream arrives in the sys-
tem, its CoD is calculated. A cluster is selected such that CoC 
= CoD. If the selected cluster is not free, a nearest free topo-
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Fig. 6. Swim lane diagram of proposed system.

logical ordered cluster is allocated. In addition, CoD of all the 
other streams with low migration cost [38] is calculated again. 
The streams whose CoD = CoC continue to run on the same 
cluster. On the other hand, resources of streams whose CoD �=
CoC (called shifting-streams) are virtually added to free pool 
list. Note that, here, resources are not actually released by 
shifting-streams until CoD of all the streams is calculated. This 
reduces waiting time. Once CoD of every stream in the sys-
tem is calculated, list of free resources is updated clusters are 
formed with the help of SOM. The newly created clusters are 
allocated to shifting-streams as described in Section 3.2.2.

• On Expiry of time period ‘r’: As illustrated in Fig. 1, the CoD 
is calculated after ‘r’ time units. The stream is migrated to ap-
propriate cluster if migration cost is low.

• Completion of any ongoing job: There are other jobs running 
on a cloud data center in addition to the streams. On com-
pletion of any such ongoing job, its resources are released and 
added to the free pool. These resources are then used during 
next cluster formation process.

Therefore, the proposed system allocates appropriate resources 
to big data stream based on its 4Vs. It migrates the stream to a 
new cluster whenever required for reducing execution time.

4. Experimental analysis

This section evaluates the proposed system experimentally. The 
two steps of the proposed system are evaluated separately in Sec-
tion 4.1 and 4.2 respectively.

4.1. Experimental evaluation of Step 1 of proposed system

In order to generate a big data stream, four datasets are ini-
tially taken. The first dataset [44] is an image dataset consisting 
of 68,040 images. The second dataset [45] is an audio set which 
is a collection of 1,059 music tracks. The third dataset [46] is a 
surveillance video dataset consisting 29 hours of video. The fourth 
dataset [47] is a textual dataset consisting of 8000000 vocabulary 
words. Using these four datasets, a database is created such that:

• It consists of 14% image data, 23% of audio data, 24% of video 
data and 39% of text data.

Fig. 7. Prediction accuracy of proposed system. (a) Predicting data volume; (b) Pre-
dicting data velocity.

• The image data is added in the database such that its volume 
is low initially and it increases towards the end of database 
(as shown by red colored line in Fig. 7(a)).

• The volume of audio data in the database is high initially and 
it decreases towards the end of database (as shown by purple 
colored line in Fig. 7(a)).

• The volume of video data in the database first decreases and 
then increases (as shown by blue colored line in Fig. 7(a)).

• The volume of text data remains almost constant throughout 
the database (as shown by orange colored line in Fig. 7(a)).

The created database is carefully fed to the system in form of 
a stream such that the velocities of image, audio, video and text 
data follow the following pattern:

• Velocity of image data first decreases and then increases with 
time (as shown by red colored line in Fig. 7(b)) such that it 
forms 18% of the overall velocity of the stream.

• Velocity of audio data decreases with time (as shown by pur-
ple colored line in Fig. 7(b)) such that it forms 26% of the 
overall velocity of the stream.

• Velocity of video data increases with time (as shown by blue 
colored line in Fig. 7(b)) such that it forms 21% of the overall 
velocity of the stream.

• Velocity of text data remains almost constant with time (as 
shown by red colored line in Fig. 7(b)) such that it forms 35% 
of the overall velocity of the stream.

It can be noted here that the stream exhibits stochasticity in 
way that the volume and velocity of various data types varies with 
time. Therefore, a stream is generated such that actual volume and 
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Table 1
Mean absolute prediction error.

Volume Velocity

Volume % MAPE Velocity % MAPE

Image data 14% 0.214 18% 0.235
Audio data 23% 0.183 26% 0.164
Video data 24% 0.176 21% 0.179
Text data 39% 0.115 35% 0.111

velocity at particular time instance is known to us. These actual 
values are compared with values predicted by the system. The pre-
diction results are shown in Fig. 7(a)–(b). Here, the first step of 
proposed system, which predicts the volume and velocity of im-
age, audio, video, and text data, is implemented in Matlab. The 
experiment uses block size of 128 MB, and a constant sampling 
rate of 0.33 samples/min (or one sample after every 3 minutes).

4.1.1. Discussion of results
It can be observed from Fig. 7(a)–(b) that the difference be-

tween actual and predicted values is low. In addition, Mean Ab-
solute Prediction Error (MAPE) is calculated in each case which is 
summarized in Table 1.

It can be observed from Table 1 that MAPE decreases with the 
increase in data volume. For example, as explained in Section 4.1.1, 
the stream consists of 14% of image data, 23% of audio data, 24% 
of video data and 39% of text data. This implies that the volume of 
image data is lowest. On the other hand, the MAPE for predicting 
volume of image, audio, video and text data is 0.214, 0.183, 0.176, 
and 0.115 respectively. This implies that MAPE is highest for image 
data. Hence, MAPE is lower for higher data volume and increases 
with the decrease in data volume. Similar trend is observed in the 
case of data velocity. This is in accordance with the Law of Large 
Numbers which states that error decreases with the increase in 
data size.

It can be concluded from the above discussion that the pro-
posed system efficiently predicts volume and velocity of image, au-
dio, video, and text data. Moreover, since the CoD vector depends 
upon the predicted volume and velocity, therefore, the accuracy of 
CoD is implied.

4.2. Experimental evaluation of Step 2 of proposed system

This section compares the proposed system with a similar QoS 
based resource management system proposed by Sandhu and Sood 
[5]. For experimental analysis, 10 big data streams are generated. 
The procedure of stream generation is same as that explained in 
section 4.1. The percentage of volume and velocity is varied to gen-
erate these 10 different big data streams as summarized in Table 2. 
(Note that, in Table 2, I, A, V and T stands for image, audio, video 
and text data respectively). One stream is fed to the system after 
every ten minutes.

Virtual Machines (VMs) are selected from Amazon Elastic Com-
pute Cloud (EC2) instances using QoS based and proposed system. 
VMs take the generated streams as input and run Alon–Matias–
Szegedy (AMS) algorithm [48] on each stream. AMS is used to 
determine the frequencies of distinct elements in a stream. In an 
experiment of two hours, the resource utilization, resource avail-
ability of cloud resource is measured as shown in Fig. 8(a) and 8(b)
respectively. In addition, the overall execution latency and response 
time of all the streams is aggregated and shown in Fig. 8(c) and 
8(d) respectively.

4.2.1. Discussion of results
As stated in Section 2, in QoS based method proposed in [5], 

the processing power, GPU power, RAM and size of input data 

Table 2
Percentage of volume and velocity in generated streams.

Volume % Velocity %

I A V T I A V T

Stream 1 14 23 24 39 18 26 21 35
Stream 2 17 22 25 36 34 25 20 21
Stream 3 26 18 32 24 30 21 23 26
Stream 4 21 17 29 33 19 33 21 27
Stream 5 15 34 23 28 21 23 30 26
Stream 6 25 25 25 25 25 25 25 25
Stream 7 32 42 26 0 24 40 36 0
Stream 8 36 33 0 31 27 35 0 38
Stream 9 24 0 30 46 39 0 29 32
Stream 10 0 29 34 37 0 41 28 31

are provided by user. These user requirements are used to allo-
cate resources to the incoming request. As stated in Section 1, user 
requirements depend upon data characteristics which are usually 
unknown to the user in case of big data streams. Therefore, in QoS 
based method, user may not be able to determine appropriate re-
sources for big data stream. Moreover, the stream is run on same 
resources for whole time period. On the other hand, the proposed 
method predicts the 4Vs of the stream and determines the ap-
propriate resources accordingly. The allocation is changed with the 
changing characteristics of data in a stream. It is due this fact that 
resource utilization is higher in case of proposed system as com-
pared to QoS based method as shown in Fig. 8(a).

Furthermore, both QoS based and proposed system uses SOM 
for cluster allocation. In both the cases, a nearest topological or-
dered cluster is immediately allocated, if the selected cluster is 
not available due to which waiting time is reduced. Hence, there 
is not much difference in the resource availability as shown in 
Fig. 8(b).

Fig. 8(c) shows the comparison of execution latency between 
the QoS based and proposed system. In case of QoS based method, 
the execution latency remains almost same with only a slight in-
crease towards the end of experiment. This is due to the fact 
that as more streams are added to the system, the probability 
of non-availability of required cluster increases (it may be already 
occupied by some other stream). Therefore, time is spent in find-
ing the nearest topological ordered cluster. On the other hand, the 
proposed system shows higher execution latency in the beginning. 
This is because CoD for the stream is calculated before it can be 
allocated an appropriate cluster. Once appropriate cluster is allo-
cated, the execution latency is decreases because suitable resources 
can process the stream at faster pace. Moreover, it is observed from 
Fig. 8(c) that there are periodic peaks after every 10 minutes since 
a new stream is added in the system after 10 minutes. CoD of 
new stream and all the other streams is calculated again which 
increases the execution latency. Inspite of this, the overall execu-
tion latency of the proposed system is less than the QoS based 
method.

Fig. 8(d) shows the comparison of response time between the 
QoS based and proposed system. It can be observed that the re-
sponse time for proposed system remains almost same throughout 
the experiment. This is because whenever characteristics of data 
in the stream changes, it is migrated to a more suitable cluster 
in the proposed system. This leads to a constant response time. On 
the other hand, response time in QoS based method increases with 
time since the stream is run on same resources for whole time pe-
riod irrespective of the data characteristics.

5. Conclusion

In this paper, an efficient resource allocation system for big 
data streams is proposed. The proposed system allocates resources 
to stream based upon its data characteristics. The allocation is 
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Fig. 8. Performance comparison of QoS based system and proposed system. (a) Com-
parison of resource utilization; (b) Comparison of resource availability; (c) Compar-
ison of execution latency; (d) Comparison of response time.

changed whenever the data characteristics change. This mecha-
nism results in a constant response time for a stream. Moreover, 
the waiting time for stream is reduced by topological ordering 
of clusters formed by SOM. The experimental results show that 
the proposed system shows a performance edge over other similar 
technique.

References

[1] Gartner Inc., What is big data?, in: Gartner IT Glossary, 2013 [Online]. Available 
http://www.gartner.com/it-glossary/big-data (accessed 12 December 2016).

[2] N. Kaur, S.K. Sood, An energy-efficient architecture for the Internet of Things 
(IoT), IEEE Syst. J. (2015) 1–10.

[3] I.A.T. Hashem, I. Yaqoob, N. Badrul Anuar, S. Mokhtar, A. Gani, S. Ullah Khan, 
The rise of ‘Big Data’ on cloud computing: review and open research issues, 
Inf. Syst. 47 (2015) 98–115.

[4] B.G. Batista, C. Henrique, G. Ferreira, D. Costa, M. Segura, D. Machado, L. Filho, 
M.L. Maciel, A QoS-driven approach for cloud computing addressing attributes 
of performance and security, Future Gener. Comput. Syst. 68 (2017) 260–274.

[5] R. Sandhu, S.K. Sood, Scheduling of big data applications on distributed cloud 
based on QoS parameters, Clust. Comput. 18 (2) (2014) 817–828.

[6] Z. Zheng, X. Wu, Y. Zhang, M.R. Lyu, J. Wang, QoS Ranking prediction for cloud 
services, IEEE Trans. Parallel Distrib. Syst. 24 (6) (2013) 1213–1222.

[7] N. Ammu, M. Irfanuddin, Big data challenges, Int. J. Adv. Trends Comput. Sci. 
Eng. 2 (1) (2013) 613–615.

[8] S. Pumma, T. Achalakul, L. Xiaorong, Automatic VM allocation for scientific 
application, in: Proceedings of the International Conference on Parallel and Dis-
tributed Systems, ICPADS, 2012, pp. 828–833.

[9] S. Singh, I. Chana, Cloud resource provisioning: survey, status and future re-
search directions, Knowl. Inf. Syst. 49 (3) (2016) 1005–1069.

[10] S. Singh, I. Chana, Q-aware: quality of service based cloud resource provision-
ing, Comput. Electr. Eng. 47 (2015) 138–160.

[11] J. Zhang, H. Huang, X. Wang, Resource provision algorithms in cloud comput-
ing: a survey, J. Netw. Comput. Appl. 64 (2016) 23–42.

[12] J. Rao, Y. Wei, J. Gong, C.Z. Xu, QoS guarantees and service differentiation 
for dynamic cloud applications, IEEE Trans. Netw. Serv. Manag. 10 (1) (2013) 
43–55.

[13] W.-J. Wang, Y.-S. Chang, W.-T. Lo, Y.-K. Lee, Adaptive scheduling for parallel 
tasks with QoS satisfaction for hybrid cloud environments, J. Supercomput. 
66 (2) (2013) 783–811.

[14] Z. Zhu, S. Li, X. Chen, Design QoS-aware multi-path provisioning strategies 
for efficient cloud-assisted SVC video streaming to heterogeneous clients, IEEE 
Trans. Multimed. 15 (4) (2013) 758–768.

[15] W.-H. Hsu, C.-H. Lo, QoS/QoE mapping and adjustment model in the cloud-
based multimedia infrastructure, IEEE Syst. J. 8 (1) (2014) 247–255.

[16] J.M. Chang, QoS-aware data replication for data-intensive applications in cloud 
computing systems, IEEE Trans. Cloud Comput. 1 (1) (2013) 101–115.

[17] S. Misra, S. Das, M. Khatua, M.S. Obaidat, QoS-guaranteed bandwidth shifting 
and redistribution in mobile cloud environment, IEEE Trans. Cloud Comput. 
2 (2) (2014) 181–193.

[18] K.T. Chen, Y.C. Chang, H.J. Hsu, D.Y. Chen, C.Y. Huang, C.H. Hsu, On the quality of 
service of cloud gaming systems, IEEE Trans. Multimed. 16 (2) (2014) 480–495.

[19] S.K. Sood, Function points-based resource prediction in cloud computing, Con-
curr. Comput. Pract. Exp. 28 (2016) 2781–2794.

[20] S.K. Sood, R. Sandhu, Matrix based proactive resource provisioning in mobile 
cloud environment, Simul. Model. Pract. Theory 50 (2015) 83–95.

[21] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, J. Kołodziej, J. Kolodziej, 
Resource-aware hybrid scheduling algorithm in heterogeneous distributed 
computing, Future Gener. Comput. Syst. 51 (2015) 61–71.

[22] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H.S.-H. Chung, Y. Li, Cloud computing 
resource scheduling and a survey of its evolutionary approaches, ACM Comput. 
Surv. 47 (4) (2015) 1–33.

[23] A. Sfrent, F. Pop, Asymptotic scheduling for many task computing in Big Data 
platforms, Inf. Sci. (Ny) 319 (2015) 71–91.

[24] Agile data integration platforms – cloud-based (iPaaS) and on-premise soft-
ware |Scribe software, [Online]. Available http://www.scribesoft.com/ (accessed 
9 December 2016).

[25] C. Olston, S. Seth, C. Tian, T. ZiCornell, X. Wang, G. Chiou, L. Chitnis, F. Liu, 
Y. Han, M. Larsson, A. Neumann, V.B.N. Rao, V. Sankarasubramanian, Nova, in: 
Proceedings of the 2011 International Conference on Management of Data, SIG-
MOD ’11, 2011, pp. 1081–1082.

[26] P. Bhatotia, A. Wieder, R. Rodrigues, U. a Acar, R. Pasquin, Incoop: MapReduce 
for incremental computations, in: Proceedings of the 2nd ACM Symp. Cloud 
Comput., SOCC ’11, 2011, pp. 1–14.

[27] L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing 
platform, in: 2010 IEEE International Conference on Data Mining Workshops, 
2010, pp. 170–177.

[28] Apache storm, [Online]. Available http://storm.apache.org/ (accessed 9 Decem-
ber 2016).

[29] Welcome to apache flume — apache flume, [Online]. Available http://flume.
apache.org/index.html (accessed 9 December 2016).

[30] D. Sun, G. Zhang, S. Yang, W. Zheng, S.U. Khan, K. Li, Re-stream: real-time 
and energy-efficient resource scheduling in big data stream computing envi-
ronments, Inf. Sci. (Ny) 319 (2015) 95–112.

[31] R. Tolosana-Calasanz, J.Á. Bañares, C. Pham, O.F. Rana, Resource management 
for bursty streams on multi-tenancy cloud environments, Future Gener. Com-
put. Syst. 55 (2016) 444–459.

http://www.gartner.com/it-glossary/big-data
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib32s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib32s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib33s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib33s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib33s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib34s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib34s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib34s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib35s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib35s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib36s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib36s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib37s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib37s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib38s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib38s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib38s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib39s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib39s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3130s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3130s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3131s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3131s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3132s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3132s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3132s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3133s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3133s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3133s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3134s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3134s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3134s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3135s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3135s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3136s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3136s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3137s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3137s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3137s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3138s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3138s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3139s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3139s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3230s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3230s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3231s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3231s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3231s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3232s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3232s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3232s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3233s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3233s1
http://www.scribesoft.com/
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3235s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3235s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3235s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3235s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3236s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3236s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3236s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3237s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3237s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3237s1
http://storm.apache.org/
http://flume.apache.org/index.html
http://flume.apache.org/index.html
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3330s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3330s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3330s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3331s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3331s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3331s1


JID:BDR AID:60 /FLA [m5G; v1.214; Prn:20/04/2017; 11:41] P.9 (1-9)

N. Kaur, S.K. Sood / Big Data Research ••• (••••) •••–••• 9

[32] M. Rahman, P. Graham, Responsive and efficient provisioning for multimedia 
applications, Comput. Electr. Eng. 53 (2016) 458–468.

[33] Q. Zhang, Z. Chen, L.T. Yang, A nodes scheduling model based on Markov chain 
prediction for big streaming data analysis, Int. J. Commun. Syst. 28 (9) (2015) 
1610–1619.

[34] A. Castiglione, R. Pizzolante, A. De Santis, B. Carpentieri, A. Castiglione, F. 
Palmieri, Cloud-based adaptive compression and secure management services 
for 3D healthcare data, Future Gener. Comput. Syst. 43–44 (2015) 120–134.

[35] J. Peng, X. Zhi, X. Xie, Application type based resource allocation strategy in 
cloud environment, Microprocess. Microsyst. (2016), http://dx.doi.org/10.1016/
j.micpro.2016.09.014.

[36] A.K. Baughman, R.J. Bogdany, C. McAvoy, R. Locke, B. O’Connell, C. Upton, Pre-
dictive cloud computing with big data: professional golf and tennis forecasting 
[application notes], IEEE Comput. Intell. Mag. 10 (3) (2015) 62–76.

[37] A. Jain, E.Y. Chang, Adaptive sampling for sensor networks, in: Proceedings of 
the 1st International Workshop on Data Management for Sensor Networks in 
Conjunction with VLDB 2004, DMSN ’04, 2004, pp. 10–14.

[38] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, Cost of virtual machine live 
migration in clouds: a performance evaluation, in: Lecture Notes in Computer 
Science, in: LNCS, vol. 5931, 2009, pp. 254–265.

[39] A. Gandomi, M. Haider, Beyond the hype: big data concepts, methods, and an-
alytics, Int. J. Inf. Manag. 35 (2015) 137–144.

[40] J. Hirschberg, A. Hjalmarsson, N. Elhadad, ‘You’re as sick as you sound’: us-
ing computational approaches for modeling speaker state to gauge illness and 
recovery, in: Advances in Speech Recognition, Springer US, Boston, MA, 2010, 
pp. 305–322.

[41] H.A. Patil, ‘Cry Baby’: using spectrographic analysis to assess neonatal health 
status from an infant’s Cry, in: Advances in Speech Recognition, Springer US, 
Boston, MA, 2010, pp. 323–348.

[42] A. Rajaraman, J.D. Ullman, Bloom filter, in: Mining of Massive Datasets, first 
edit, Cambridge University Press, 2014, pp. 116–118.

[43] G. Deodatis, M. Shinozuka, Auto-regressive model for nonstationary stochastic 
processes, J. Eng. Mech. 114 (11) (1988) 1995–2012.

[44] UCI machine learning repository: corel image features data set, [Online]. Avail-
able https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features (accessed 13 
December 2016).

[45] UCI machine learning repository: geographical original of music data 
set, [Online]. Available https://archive.ics.uci.edu/ml/datasets/Geographical+
Original+of+Music (accessed 13 December 2016).

[46] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J.T. Lee, S. Mukherjee, J.K. 
Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, M. Shah, C. 
Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, B. Song, A. Fong, A. 
Roy-Chowdhury, M. Desai, A large-scale benchmark dataset for event recogni-
tion in surveillance video, in: CVPR 2011, 2011, pp. 3153–3160.

[47] UCI machine learning repository: bag of words data set, [Online]. Avail-
able https://archive.ics.uci.edu/ml/datasets/Bag+of+Words (accessed 13 Decem-
ber 2016).

[48] A. Rajaraman, J.D. Ullman, Estimating moments, in: Mining of Massive Datasets, 
first edit, Cambridge University Press, 2014, pp. 122–127.

http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3332s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3332s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3333s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3333s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3333s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3334s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3334s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3334s1
http://dx.doi.org/10.1016/j.micpro.2016.09.014
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3336s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3336s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3336s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3337s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3337s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3337s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3338s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3338s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3338s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3339s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3339s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3430s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3430s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3430s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3430s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3431s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3431s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3431s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3432s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3432s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3433s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3433s1
https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3436s1
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3438s1
http://refhub.elsevier.com/S2214-5796(16)30090-9/bib3438s1
http://dx.doi.org/10.1016/j.micpro.2016.09.014

	Efﬁcient Resource Management System Based on 4Vs of Big Data Streams
	1 Introduction
	2 Related work
	3 Proposed system
	3.1 Step 1: estimating data characteristics
	3.1.1 Variety determination
	3.1.2 Volume & velocity prediction using variability
	3.1.3 Calculating relative volume and velocity
	3.1.4 Efﬁcient representation of predicted 4Vs

	3.2 Resource management
	3.2.1 Dynamic cluster formation
	3.2.2 Dynamic cluster allocation

	3.3 Workﬂow of proposed method

	4 Experimental analysis
	4.1 Experimental evaluation of Step 1 of proposed system
	4.1.1 Discussion of results

	4.2 Experimental evaluation of Step 2 of proposed system
	4.2.1 Discussion of results


	5 Conclusion
	References


