
S P EC I A L I S S U E PA P ER

Dynamic resource allocation for big data streams based on data
characteristics (5Vs)

Navroop Kaur | Sandeep K. Sood

Guru Nanak Dev University Regional
Campus Gurdaspur, Gurdaspur, Punjab,
India

Correspondence
Navroop Kaur, Guru Nanak Dev University
Regional Campus Gurdaspur, Gurdaspur,
Punjab, India.
Email: navonline98@gmail.com

Summary
Various Internet‐based applications such as social media, business transactions,

mobile applications, cyber‐physical systems, and Internet of Things have led to

the generation of big data streams in every field. The growing need to extract

knowledge from big data streams has pioneered the challenge of selecting appropri-

ate cloud resources. The current techniques allocate resources based on data

characteristics. But because of the stochastic nature of data generation, the

characteristics of data in big data streams are unknown. This poses difficulty in

selecting and allocating appropriate resources to big data stream. Working towards

this direction, this paper proposes a system that predicts the data characteristics in

terms of volume, velocity, variety, variability, and veracity. The predicted values

are expressed in a quadruple called Characteristics of Big data (CoBa). Thereafter,

the proposed system uses self‐organizing maps to dynamically create clusters of

cloud resources. One of these clusters is allocated to the big data stream based on

its CoBa. The proposed system is dynamic in the sense that it changes the cloud

cluster allocated to big data stream if its CoBa changes. Experimental results show

that the proposed system has a performance edge over other streaming data process-

ing tools such as Storm, Flume, and S4.

1 | INTRODUCTION

A collection of huge volumes of diverse types of structured
and unstructured data that cannot be handled by state‐of‐
the‐art data processing platforms is termed as big data. The
size of big data may span over multiple terabytes, petabytes,
or even zettabytes. In a survey conducted by IBM,1 more than
half of 1144 respondents believed that datasets of size over
1 TB qualify as big data. However, defining specific thresh-
olds for big data volume is rather impractical since it is a rel-
ative term.2 The data volume that defines big data today may
not meet the threshold in future owing to enhanced storing
capacities allowing data in higher volumes to be captured eas-
ily. In addition, an unstructured dataset of certain size may be
considered as big data while a structured dataset of same size
may not qualify as big data. This implies that the definition of
big data has gone beyond the realm of data volume to some

other defining characteristics such as variety and velocity.3

Variety refers to heterogeneity of data types. The text, image,
audio, and video data captured by sensors, actuators, business
transactions, social networks, and smart environments con-
tribute to data variety. Most of this data are in unstructured
format.4 Velocity refers to unprecedented speed of data gener-
ation and data analysis. There is an interesting interplay
between volume and velocity. For example, data collected
and transmitted by a spacecraft after every 6 seconds is con-
sidered as big data because of its huge volume.5 On the other
hand, small amount of data generated by thousands of tweets
per second is also considered as big data because of its high
velocity. Due to such considerations, there are no specific
thresholds for data velocity.

Furthermore, in addition to volume, variety, and velocity
(the 3 Vs), there are other dimensions of big data, namely,
veracity, variability, value, and visualization. Veracity, a term

Received: 29 September 2016 Revised: 9 March 2017 Accepted: 17 March 2017

DOI: 10.1002/nem.1978

Int J Network Mgmt. 2017;e1978.
https://doi.org/10.1002/nem.1978

Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/nem 1 of 16

http://orcid.org/0000-0002-8414-1534
mailto:navonline98@gmail.com
https://doi.org/10.1002/nem.1978
https://doi.org/10.1002/nem.1978
http://wileyonlinelibrary.com/journal/nem

coined by IBM, implies the untrustworthiness inherent in
some sources of data. Variability, introduced by SAS, refers
to variation in data flow rate. Value, introduced by Oracle,
refers to the process of extracting knowledge from big data.
Visualization is the representation of results obtained from
big data in the form of charts and graphs.

Big data has emerged as a widely recognized trend.
The main sources of big data include social media, busi-
ness transactions, mobile applications, cyber‐physical sys-
tems, and Internet of Things (IoT).6-8 These applications
generate continuous streams of big data across the globe.
Here, it can be noted that there are 2 main situations
where data are considered as streaming data, firstly, when
it flows too fast to store in its entirety, and, secondly,
when the application mandates immediate response to
data. For example, social media, business transactions,
and mobile applications generate data at a very high
velocity. Facebook handles nearly 1 million photographs
per second; twitter produces 6000 tweets per second on
an average,9 and Wal‐Mart handles more than 1 million
transactions per second.4 On the other hand, immediate
response is required on rich spatiotemporal information
acquired by advanced sensors of IoT network and cyber‐
physical systems. With respect to this, data generated by
all the above mentioned major sources of big data qualify
as big data streams.

The distillation of knowledge from big data streams is
essential as well as a difficult task. It is beyond the capa-
bilities of traditional systems and requires cloud
resources.2 With the growth of big data on cloud,7

selecting optimal number of cloud resources for each
incoming request emerged as a key challenge. Moreover,
the requirement of real‐time analysis of big data streams
further enhances the necessity of selecting appropriate
resources. Working towards this direction, it is posited
that there 2 approaches for selecting appropriate resources.
The first approach allows users to select the resources.
For such an allocation, user must be acquainted with
the characteristics of data. For example, user selects
higher memory size for higher volume data; higher GPU
power for video streams; and higher processing power
for higher velocity and higher variability. Consequently,
such resource selection is limited by the expertise of user.
Moreover, even if the user possesses enough expertise,
knowledge of data characteristics is necessary. Neverthe-
less, due to stochastic nature of data generation by vari-
ous sources, characteristics of incoming big data stream
are generally unknown. This fact makes the manual selec-
tion of cloud resources relatively unsuitable for big data
streams.

On the other hand, the second approach (the one used in
proposed system) allows system to automatically select
suitable cloud resources by predicting data characteristics.

Here, the major question that arises is as follows: Which data
characteristics should be predicted by the system? In 2015,
Zhang, Chen, and Yang10 argued that data volume plays a vital
role in efficient selection of cloud resources for big data
streams. On the other hand, Baughman et al11 illustrated that
predicting velocity of incoming big data request is crucial for
efficient provisioning of cloud resources. Furthermore,
Castiglione et al12 emphasized that variation in data flow rate
(variability) affects cloud resource allocation. In 2016, Peng
et al13 accentuated the importance of data variety for selecting
appropriate cloud resources. In addition, in 2017, Rehman et
al14 found that volume, velocity, variety, variability, and verac-
ity (5Vs) are essential parameters for efficiently mining data
streams. From these studies, it is concluded these 5Vs of big
data streams are driving parameters for cloud resource alloca-
tion. To the best of our knowledge, none of the existing
approaches uses all the 5Vs for selecting optimal number of
cloud resources. Hence, this paper proposes an automated sys-
tem that predicts the 5Vs of big data stream and later uses the
predicted values for dynamic resource allocation to big data
streams.

For predicting the 5Vs, the system initially filters out
the data from unreliable sources (veracity) and separates
various data varieties with the help of Bloom filter.15

Thereafter, it uses Kalman filter16 to estimate the volume
and velocity of each data variety arriving at the system in
next interval. Variability of data is incorporated while
estimating volume and velocity. Later, self‐organizing
map (SOM)17 is used for dynamic resource allocation
based on the predicted 5Vs. Here, it is worth mentioning
that proposed method prefers Kalman filter over other
prediction solutions since it can be easily tailored to pro-
vide unbiased estimations on a wide range of data streams
even when the variance is high. On the other hand, SOM
is used for clustering since it can easily and dynamically
create clusters by creating reference vectors in topological
ordered fashion such that more is the relationship between
2 reference vectors, closer is their topological ordering.
The proposed method takes advantage of such topological
ordering of SOM to reduce waiting time.

The scientific contribution of this paper is two‐fold.
Firstly, the proposed system efficiently predicts the afore-
mentioned 5Vs of big data stream, which have not been
proposed hitherto. Secondly, it presents a unique approach
to determine and allocate appropriate resources for stream
analysis based on data characteristics. Furthermore, the
resource allocation technique proposed here is dynamic
and adaptive.

This paper is organized into 5 sections. Section 2 gives
the preliminary knowledge of concepts used in proposed
system. Section 3 discusses the working of proposed system.
Section 4 provides experimental setup, results, and discus-
sion. Finally, Section 5 concludes the paper.

2 of 16 KAUR AND SOOD

2 | PRELIMINARIES

This section first presents the work related to the field of big
data and cloud resource management. Later, it gives the pre-
liminary knowledge of the Bloom filter, Kalman filter, and
SOM that are used in proposed system.

2.1 | Related work

Literature finds various attempts to define big data.2 The def-
inition of big data includes the explanation of its essential
characteristics (the 7 Vs). Yaqoob et al8 identified the origin
of the term big data and its various sources. They found that
the growth of data from applications such as social net-
works,18 business transactions,19 mobile applications,20

cyber‐physical systems,21 and IoT22 have sparked big data
era. With such an upsurge, big data analytics is gaining
momentum. Various authors summarized the state‐of‐the‐art
big data analytical technologies and techniques.8,23,24 They
highlighted the role of cloud computing in big data analytics.
Supporting this viewpoint, Yang et al6 stated that cloud com-
puting provides fundamental support to big data analytics by
leveraging various computation and storage resources on
demand. Furthermore, Hashem et al7 posited that big data
applications are increasing on cloud. They presented the fact
that selecting appropriate techniques and cloud resources for
analyzing big data is a major research problem. Working
towards this direction, Pumma, Achalakul, and Li25 argued
that suitable amount of cloud resources should be determined
prior to the start of execution. Consequently, the field of
predicting and provisioning cloud resources26-28 gained
momentum. Nevertheless, the work on big data application
scheduling is still sparse.

Dynamic resource provisioning for big data applications
is a challenging issue.29 There are various research directions
for real‐time, distributed, dynamic, adaptive, and
multiobjective scheduling of big data applications as identi-
fied by Zhan et al.30 Sfrent and Pop31 accentuated that big
data applications are greatly affected by the resource schedul-
ing algorithm. They studied various scheduling algorithms
and found that best resource scheduling algorithm can be dis-
covered under certain conditions. In 2014, Sandhu and
Sood32 proposed a quality of service–based framework to
schedule big data applications over distributed cloud.

With the ubiquity and prevalence of Internet‐based appli-
cations, big data started flowing in continuous streams. This
led to the emergence of stream‐processing paradigm. The
challenge of deriving insights from big data streams is recog-
nized as a key challenge. Various authors proposed various
algorithms and techniques for mining big data
streams.13,14,33-38 The proposed algorithms illustrated vari-
ous techniques to collect, integrate, analyze, and visualize

big data streams in real time. Nevertheless, less attention
has been paid to resource scheduling for big data streams.
Sun et al39 proposed a graph‐based method that manages
the resources held by stream‐processing tools in an energy‐
efficient way. Furthermore, Tolosana‐Calasanz et al40 pro-
posed a method to processes data streams such that the profit
of cloud provider is maximized. In 2016, Rahman and
Graham41 developed a priority‐based method for multimedia
data processing. But the methods proposed in Tolosana‐
Calasanz et al40 and Rahman and Graham41 are static hybrid
algorithms. Zhang et al10 efficiently predicted the big data
volume using Markov chain and assigned nodes for data pro-
cessing accordingly. But the model does not consider the
other Vs of big data for resource allocation that are important
parameters for every incoming data request.

2.2 | Bloom filter

Bloom filter15 is probabilistic data structure that is used to
filter out the elements that do not belong to a set. It consists
of a bit‐array of m elements, a set “S”of allowable “key”
values and a collection of hash functions. MD5 hash
algorithms are the most commonly used hash functions in
Bloom filter. The working of Bloom filter involves 2 steps.
The first step is meant to insert “key” values in the filter. This
step starts by setting all the bits in the array to 0. A “key”
value is hashed by all the hash functions. All the bit elements
to which the “key” value hashes is set to 1. This process is
repeated for all “key” values. Hence, bit‐array, with some of
the bits set to 1, is the resultant of step 1. The second step
calculates hash values of the element arriving at filter. This
element is allowed to pass only if all the bits to which its
hashes are set to 1. Therefore, Bloom filter allows all the
elements whose keys are in S, while rejecting most of the
elements whose keys are not in S. The major strengths of
Bloom filter are its space‐efficiency, speed, and constant
complexity for adding and filtering elements. These features
make it suitable for streaming data. Therefore, it is used in
the proposed system for filtering streams such that most non-
member elements of the stream are deleted that guarantees
veracity of data. Moreover, it never reports false negative.
The element that it reports to be not of the set is “definitely
not” in the set. On the other hand, it is subject to false
positives. It can claim an element to be part of set when it
is not. Nevertheless, this false positive rate does not impact
its use in the proposed system because its space‐efficiency
and speed outweigh the false positive probability.

2.3 | Kalman filter

Kalman filter,16 introduced by Rudolph E. Kalman in 1960,
is an efficient recursive filter. It is a mathematical toolbox
capable of dynamically predicting the future trends from

KAUR AND SOOD 3 of 16

incoming streams of noisy sensor measurements. For
predicting the future trends, it uses a set of mathematical
equations called predictor‐correction equations. The predic-
tor equations are responsible for a priori estimate of the
parameter(s) under consideration. These equations project
forward the state of system and error covariance to obtain
the required a priori estimate. The corrector equations are
meant for providing feedback to the predictor equations.
These equations incorporate new measurement of the param-
eter(s) under consideration into the a priori estimate to
improve future estimates, thereby, minimizing error variance.
The predictor‐corrector equations work recursively to capture
current state of the system and to optimally predict the future
trends. Here, prediction is optimal in the sense that the
estimated error covariance is minimized. This feature makes
it suitable for a large class of prediction and forecasting
problems.

There are various advantages of Kalman filter. Firstly, the
mathematical equations of Kalman filter are not hard to
compute that makes it easy to use. Secondly, the filter works
efficiently even in the absence of optimal conditions. Thirdly,
it can predict the values accurately even in the presence of
noise. Fourthly, it not only provides an optimal estimation
of received parameters but also predicts hidden parameters
of the incoming stream from the available data. For example,
let Kalman filter receives a stream of noisy observations
about the position of an object. It can accurately predict the
position as well as velocity of that object in future. Lastly,
it can efficiently capture spatiotemporal correlations of data
that makes it suitable for time‐series analysis of a system.
Therefore, the mathematical power of Kalman filter is used
to predict the volume and velocity of big data streams by
capturing spatiotemporal correlations (variability) of data.

2.4 | Self‐organizing maps

Self‐organizing map17 is one of the unsupervised neutral net-
work‐learning techniques that can be used during exploratory
phase of data mining. For exploring data properties, it pro-
jects higher dimensional data into lower dimensional (usually
2‐D) grids. Such projection helps in efficient visualization of
data and in cluster analysis. In the proposed system, SOM is
used for clustering. During clustering, SOM transforms input
data to vectors that forms input layer of neural network. On
the other hand, it finds a set of centroids of each cluster. Each
centroid is associated with a neuron. These neurons form the
output layer of neural network. The input vectors are assigned
to the cluster that provides best approximation centroid.

Unlike other clustering techniques, SOM imposes neigh-
borhood relations on the centroids. This implies that the clus-
ters that are closer are more related to one another than the
clusters that are far away. Therefore, when an input vector
is processed, not only the best approximation centroid but

also the neighboring centroids are updated. The processing
of vectors stops only when centroids do not change further.
It is due to this feature of SOM that it is classified as unsuper-
vised learning technique. After completion of processing,
clusters are formed. Due to neighborhood relations of
centroids, the output clusters exhibit topological ordering.
The proposed system takes advantage of such topological
ordering to minimize waiting time.

3 | PROPOSED SYSTEM

The proposed system aims to allocate appropriate resources
to big data stream based on its volume, velocity, variety,
veracity, and variability. The overall working of proposed
system is shown in Figure 1, where a big data stream is ana-
lyzed on cloud to obtain required output. Here, it can be
noted that big data stream consists of a variety of data ele-
ments. As stated earlier, big data stream is generated from
various sources such as social media, business transactions,
cyber‐physical systems, and IoT. The data from these sources
can be in the form of text (such as emails, news, social net-
work feeds, numeric values, sensor measurements, HTML,
XML, JSON, postscript, log files, etc), images, audio, and
video. Various big data analytical algorithms are used for
unlocking potential intelligence from these data. There are
mainly 4 types of big data analytics,2 namely, text analytics,
image analytics, audio analytics, and video content analytics.
On the basis of the type of analytics used, it can be said that
big data stream consists of 4 types of data elements, namely,
text data elements, image data elements, audio data elements,
and video data elements as shown in Figure 1.

For analyzing stream consisting of various data elements
on cloud, appropriate resources are selected by the proposed
system. To accomplish this goal, the proposed system uses 2
modules, namely, workload estimator (WEst) and cloud
resource manager (CRM). Workload estimator initially
extracts small chunks of data from incoming stream, as
shown in Figure 1, using an adaptive sampling technique.42

Taking smaller chunks not only enables efficient forecasting
but also reduces calculation. On the other hand, the adaptive
sampling allows the system to adjust the sampling rate auton-
omously according to the characteristics of streaming data.
The selected data chunk is analyzed by WEst to estimate
the workload that is expected to arrive during the next time
interval. The estimated workload, expressed in a quadruple
called Characteristics of Big data (CoBa), is passed as input
to CRM as shown in Figure 1. Cloud resource manager uses
CoBa to dynamically create and allocate clusters of free
cloud resources using SOM. This process is repeated after
“t” time units, where “t” is the time slice whose value
depends upon the sampling rate.

4 of 16 KAUR AND SOOD

The detailed working of the 2 modules is given in
Sections 3.1 and 3.2, respectively. Section 3.3 presents a
detailed flowchart of the proposed system and explains how
WEst and CRM works in close coordination to achieve the
required objectives.

3.1 | Workload estimator

For estimating the workload that will arrive in next time inter-
val, WEst works in 3 steps as shown in Figure 2. The first
step takes the extracted data chunk as input and works on
variety and veracity of big data stream. It uses 4 Bloom filters
corresponding to each of the text, image, audio, and video
data elements. The bloom filter for text data allows only text
elements from trustworthy sources to pass through it, thereby
providing text stream as output. Similar is the case for the
other filters. This implies that the incoming big data stream
is converted into 4 streams each carrying only 1 type of data
elements. These resultant streams are called elementary
streams. The second step is a MapReduce‐based framework
that uses Kalman filter to estimate volume and velocity of
each of the elementary stream. Here, it is worth mentioning
that data flow can be inconsistent with periodic, seasonal,
or daily peaks and troughs. For example, when something
is trending on social media, data flows at higher velocity.
Such a variation in data flow rate (ie, variability) plays an
important role in predicting volume and velocity.
Consequently, Kalman filter estimates volume and velocity
by taking variability into account.

The first 2 steps, therefore, accomplish the task of
predicting the 5Vs of big data stream. The third step uses
the estimated values of volume and velocity to calculate a
term called data flow level (described in Section 3.1.3). The
flow rates of text, image, audio, and video data are repre-
sented in CoBa. Hence, WEst takes data chunk as input and
gives CoBa as output. The detailed explanation of these 3
steps is given below.

3.1.1 | Step 1: Determining variety and
veracity

The goal of this step is to separate elementary streams and
filter out the data elements from untrustworthy sources. Such
a separation helps to determine first 2 Vs, ie, variety and
veracity of big data stream. As stated earlier, 4 Bloom filters
are used to accomplish this task. The overall working of these
4 Bloom filters is shown in Figure 3. Here, the extracted data
chunk consists of various data elements. This data chunk is
fed to all the 4 bloom filters. The bloom filter for text data
allows only text element to pass through. Similar is the case
for other filters. Moreover, it can be noted that the bloom
filter for image data received 3 image elements but allowed
only 1 to pass through. This is because the others are from
unreliable sources. The filtered data elements enter into their
respective buckets. These buckets are open‐ended that allows
elements to pass through the other end, forming respective
elementary streams.

FIGURE 1 Overview of proposed method

FIGURE 2 Workload prediction by workload estimator

KAUR AND SOOD 5 of 16

In the proposed system, each Bloom filter consists of

1. F: a set of all acceptable data formats (such as png, jpeg,
etc for image data elements).

2. O: a set of all trustworthy sources.
3. S ¼ F×O: a set of key values.
4. BF m½ � : a bit array of “m” elements such that m ¼

− Sj j� ln pð Þ
ln 2ð Þ½ �2

l m
; where p is the acceptable false positive rate

and Sj j denotes the cardinality of set S.
5. A collection of “H” hash functions h1, h2 , … … , hH

such that H ¼ round ln 2ð Þ� m
Sj j

� �
.

Here, the sets F and O are application dependent and
are defined as per requirements of the user. A set S of
key values is constructed by taking Cartesian product of F
and O. This implies that set S consists of a list of data for-
mats from reliable sources. The data elements that belong to
set S will be allowed to pass through the Bloom filter.
Furthermore, “H” number of hash functions are randomly
chosen. Moreover, all the bits in array BF[m] are initialized
to 0. Thereafter, for every key ki ϵ S, h1(ki) , … … , hH(ki)
are calculated, and the corresponding bit, ie, BF[hj(ki)] is
set to 1. This process is called initialization of the filter.
Once a Bloom filter is initialized, it is used to filter the data
elements. For each stream element “e” arriving at the filter,
hash values h1(e) , … … , hH(e) are calculated. If BF[hj(e)]
=1 for all j, then the element is allowed to pass else it is
blocked at the filter. In other words, filter allows the
element “e” to pass only if it hashes to bit positions that
are all set to one.

An example of initialization and working of Bloom filter
is shown in Figure 4. Let there are 3 key values k1, k2, and k3.
The value of m and H are calculated by using p=0.1. The
resultant values are m=15 and H=3. Hence, an array of 15
bits is taken. The key values k1 , k2 , and k3 are hashed using

the 3 hash functions to respective positions in the array as
shown by curved lines in Figure 4. Thereby, the Bloom filter
is initialized such that 8 of 13 bits are set to 1. Later, when
data element “e1” arrives, the hash values are calculated
using the 3 hash functions. It can be observed that all the
bit positions of array to which “e1” is hashed are set to one.
Therefore, “e1” is allowed to pass. On the other hand, “e2”
results in a hash value that is “0.” So it is not allowed to
pass through.

3.1.2 | Step 2: Estimating volume and velocity
using variability

This step aims to estimate the volume and velocity of each
elementary stream by taking variability on‐board. It uses
MapReduce‐based framework to achieve the required
objectives. Four such frameworks are used in the system,
one each for the 4 elementary streams (shown in Figure 2).
Working of all the 4 frameworks is same, except for the type
of elementary stream input to it. Therefore, this section
presents a generalized explanation of the framework that is
applicable to all 4 of them.

The working of MapReduce‐based framework is
shown in Figure 5 where, initially, the elementary stream

FIGURE 3 Predicting variety and veracity using Bloom filter

FIGURE 4 Example of working of Bloom filter

6 of 16 KAUR AND SOOD

(from step 1) is randomly split across several map functions.
The number of map functions varies according to the data
arrival rate that allows the system to adjust data processing
speed according to data arrival rate. Each map function esti-
mates volume and velocity using Kalman filter. The estimated
value of volume is sent to 1 reduce function while that of
velocity to another reduce function. Each of the 2 reduce func-
tions aggregate the received values to calculate overall volume
and velocity. Since reduce function simply aggregates the
values provided by map function, therefore, only 2 reduce
functions can work effectively without creating bottleneck of
the system. The estimated values of volume and velocity are
denoted by EVol() and EV(), respectively. It can be noted here
that EVol() and EV() are generalized notations applicable to all
the 4 elementary streams. For example, estimated volume and
velocity for text stream is represented by EVol(T) and EV(T).
The details of map and reduce functions are as follows.

Map function: Map function executes the predictor‐
corrector equations of Kalman filter. These equations are
implemented by every map function in all the 4 MapReduce
based‐frameworks on their respective elementary streams.
The notations used in these equations are summarized in
Table 1. Initially, predictor equations estimate volume,
velocity, and error covariance of (i + 1)th data chunk before
it actually arrives by using Equations 1 to 5.

ρ′iþ1 ¼ α1ρi þ α2ρi−1 þ………þ αqρi−qþ1 (1)

where

αj ¼
covariance ρi; ρi−j

� �

variance ρj
� � : (2)

n′iþ1 ¼ β1ni þ β2ni−1 þ………þ βqni−qþ1 (3)

where

βi ¼
covariance ni; ni−j

� �

variance nj
� � : (4)

Ω′
iþ1 ¼ Ωi þ Q (5)

In Equation 1, the variability of data is captured by α,
which denotes the corelation between 2 values. Let α is high
for ρi and ρi− x. This implies that ρi is similar to ρi− x, then it
is assumed that ρi+ 1 will be similar to ρi− x + 1 because of
periodic trends. Hence, for identifying periodic trends (or
variability), the corelation of ρi with “q” preceding values is
calculated. Here, “q” depends upon the time period for which
variability is considered. For example, to capture daily peaks
and troughs, variability of a single day is considered. In such
a case, q will be equal to number of data chunks extracted by
the system in 1 day. This implies that Equation 1 estimates
the volume of (i + 1)th data chunk by taking variability into
consideration. Similar is the case for velocity calculation in
Equation 3. Furthermore, in Equation 5, Q is estimated with
the help of recursive covariance estimation algorithm.43

Thereafter, corrector equations (given by Equations 6‐9)
modify these estimated values after the arrival of (i + 1)th

data chunk. Equation 6 calculates a factor called Kalman gain
using estimated error covariance, Ω′

iþ1 , measurement noise
covariance, R, where R is given by recursive covariance
estimation algorithm.43 The corrected values obtained from
the corrector equations are later used by predictor equations

FIGURE 5 Overview of MapReduce‐based framework

TABLE 1 Notations used in predictor‐corrector equations

Notation Brief Meaning Notation Brief Meaning

ρ′i : Estimated volume of ith data chunk Q: Process noise covariance

ρi: Corrected volume of ith data chunk R: Measurement noise covariance

n′i : Estimated velocity of ith data chunk yi: ith measurement of volume

ni: Corrected velocity of ith data chunk zi: ith measurement of velocity

Ω′
i : Predicted error covariance of ith data chunk Ki: Kalman gain at ith prediction step

Ωi: Corrected error covariance of ith data chunk

KAUR AND SOOD 7 of 16

for estimating volume and velocity of (i + 2)th data chunk.
This implies that predictor‐corrector equations work in a
continuous loop for every data chunk. The overall working
of map function using predictor‐corrector equations is
summarized in Figure 6.

Kiþ1 ¼
Ω′

iþ1

Ω′
iþ1 þ R

(6)

ρiþ1 ¼ ρ′i þ Ki yi−ρ
′
i

� �
(7)

niþ1 ¼ n′iþ1 þ Ki zi−n′i
� �

(8)

Ωiþ1 ¼ 1−Kiþ1ð ÞΩ′
iþ1 (9)

Reduce function: As stated earlier, there are 2 reduce
functions, one each for volume and velocity. The reduce
function for volume estimation receives the value of ρ′iþ1

from all the map functions used in MapReduce‐based frame-
work as shown in Figure 5. It calculates the average,
Avg ρ′iþ1

� �
, of all these values. Subsequently, Avg ρ′iþ1

� �
is

compared with mean, μ(ρ), and standard deviation, σ(ρ), of
volume of “N” big data streams, where N = total number
of big data streams being processed on cloud during time
period “t.” This comparison results in EVol() such that

1. If 0≤Avg ρ′iþ1

� �
< μ ρð Þ−σ ρð Þð Þ, then EVol()= “Low.”

2. If μ ρð Þ−σ ρð Þð Þ≤Avg ρ′iþ1

� �
≤ μ ρð Þ þ σ ρð Þð Þ, then EVol()

= “Medium.”
3. If Avg ρ′iþ1

� �
> μ ρð Þ þ σ ρð Þð Þ, then EVol() = “Low.”

Similarly, the reduce function for velocity calculates
EV(). The working of these 2 reduce functions is summarized
in Figure 7.

3.1.3 | Step 3: Representation of estimated
workload

The last step of WEst is aimed to represent EVol() and EV()
of all the elementary streams in a form that can be efficiently
used by CRM to allocate appropriate resources to big data
stream. To achieve this goal, a term called data flow level is
initially calculated for each elementary stream. Data flow
level can be formally defined as.

Definition 1. Data Flow Level—If U and W
are the 2 sets denoting volume and velocity,
respectively, of an elementary stream “E” such
that U = W = {Low, Medium, High} and X and
Y are the 2 sets such that X = {(a,b) ∣ (a,b) ∈ U
×W} and Y = {c ∣ c∈Zand 0 ≤ c ≤ 8}, then the
data flow level of an “E” is given by a bijective
function f: X ! Y where f(Low, Low) = 0,
f(Low, Medium) = 1, f(Low, High) = 2,
f(Medium, Low) = 3, f(Medium, Medium) = 4,
f(Medium, High) = 5, f(High, Low) = 6, f(High,
Medium) = 7, f(High, High) = 8 is the one‐to‐
one mapping from set X to set Y.

Informally, data flow level of an elementary stream is
given by Table 2. This allocation is based on experimental
evidence (given in Section 4). It can be noted from the table
that data flow level increases with the increasing volume of
data in elementary stream. On the other hand, with the same
volume, data level increases with the velocity of data in ele-
mentary stream. By using EVol(T), EV(T), and Table 2, the

FIGURE 7 Working of reduce function

FIGURE 6 Working of predictor‐corrector equations in each map
function

8 of 16 KAUR AND SOOD

data flow level of text stream (denoted by TF) is calculated.
Correspondingly, the data flow level of image stream (IF),
audio stream (AF), and video stream (VF) are also calculated.

Recall that the 4 elementary streams correspond to 4
types of data in big data stream (data variety). Each elemen-
tary stream does not contain data from untrustworthy sources
(data veracity). EVol() and EV() for each elementary stream
are calculated by taking variation in data flow rate into con-
sideration (volume, velocity, and veracity). This implies that
EVol() and EV() represents the 5Vs of a big data stream.
Furthermore, since TF , IF ,AF, and VF are formed from
EVol() and EV(), so they too represent the 5Vs of big data
stream. In other words, TF , IF ,AF, and VF, when taken
together, represent the characteristics of big data in 5Vs.
Hence, for efficient representation of 5Vs of big data stream,
a quadruple called CoBa is introduced. CoBa is defined as

Definition 2. Characteristics of Big Data
(CoBa)—If Y = {c ∣ c ∈Z and 0 ≤ c ≤ 8} and
TF , IF ,AF, and VF denote, respectively, the
data flow level of text, image, audio, and video
streams, then an ordered quadruple (C1,C2,
C3,C4) representing the volume, velocity, vari-
ety, veracity, and variability of a big data
stream is called CoBa, where (C1,C2,C3,
C4)∈ (Y×Y×Y×Y) and C1=TF ,C2= IF ,
C3=AF , and C4=VF. In other words,
CoBa = (TF , IF ,AF ,VF).

Let a big data stream forms CoBa = (8, 0, 0, 0). This
implies that the data flow level is high for text stream and
low for the other 3 elementary streams. In other words, this
stream majorly consists of text data flowing in high volume
and at high velocity. Such a stream is called text intensive
big data stream in the proposed system. Similarly, names
are given to few other streams as summarized in Table 3. This
nomenclature and CoBa are used by CRM for efficient cloud
resource allocation.

3.2 | Cloud resource manager

The data processing requirements are different for different
big data streams. It is unreasonable to form static clusters

of cloud resources for each requirement. Hence, there is a
need to form dynamic clusters as per the current require-
ments. The task of dynamic cluster formation for a big data
stream is accomplished by CRM with the help of SOM.
Self‐organizing map consists of an input layer and an output
layer. The neurons in the output layer represent the clusters.
Each input vector is mapped to one of the output neuron.
All the input vectors that are mapped to same output neuron
form a cluster. In the proposed system, CoBa forms the out-
put neurons of SOM and cloud resources form input vectors.
The cloud resources that map to same quadruple, CoBa,
form a cluster. For example, let there are 3 big data streams
on the cloud data center and let B1 ,B2 , and B3 be their
respective CoBa quadruples. These 3 quadruples form the
output neurons or the 3 output clusters. The free cloud
resources, which form input vectors, are then mapped to
these output neurons to form the respective clusters. Note
that, in this example, only 3 clusters are formed. This will
prevent a big data stream to move to another cluster if its
CoBa changes. To remove this limitation, all the possible
CoBa are initially arranged in a topological ordered fashion
as shown by color coding in Figure 8. The system forms
output neurons of few topological neighbors too. This will
result in formation of topological ordered clusters of free
cloud resources.

The process of mapping input vectors to output vectors, ie,
cluster formation, is given by Algorithm 1. The algorithm
starts with the initialization of weights and learning factor η.
The learning factor defines the speed with which neural
network learns. It is initialized to a value slightly lower than
1 that decreases monotonically with the passage of time. This

TABLE 2 Data flow level calculation table

EVol() EV() Data Flow Level EVol() EV() Data Flow Level

Low Low 0 Medium High 5

Low Medium 1 High Low 6

Low High 2 High Medium 7

Medium Low 3 High High 8

Medium Medium 4

TABLE 3 Nomenclature of streams used in the proposed system

CoBa Name given to big data stream

(8, 0, 0, 0) Text intensive

(0, 8, 0, 0) Image intensive

(0, 0, 8, 0) Audio intensive

(0, 0, 0, 8) Video intensive

(0, 0, 0, 0) General purpose

Abbreviation: CoBA, characteristics of big data.

KAUR AND SOOD 9 of 16

implies that initially, SOM learns quickly and later the speed
of learning is decreased. After initialization, SOM randomly
chooses one of the resource vectors (Mi) and finds its dis-
tance from each CoBa neuron. The CoBa neuron (BJ) with
minimum distance is the winning vector. Therefore,
resource Mi is allocated to stream with CoBa = BJ. This
process is repeated for every resource. All the resources
whose winning neuron is BJ are said to be in 1 cluster.
The clusters hence formed are identified by a term called
Characteristics of cluster (CoC). Characteristic of cluster
can be formally defined as

Algorithm 1: Dynamic clustering by SOM
1. Initialize weights of edges from inputs to outputs to a small
random value.

2. Assign value slightly less than 1 to the learning factor η.
3. Repeat steps 3 to 9 while computation bounds are not

exceeded.
4. For each input vector Mi, repeat steps 6 to 8.
5. For each output neuron j, calculate square of Euclidean

distance of Mi as

D jð Þ ¼ ∑
q

k¼1
Mik−wjk
� �2

6. Select J such that D(J) is minimum.
7. Set CoC(Mi)=CoBa(BJ)

8. Update weights of all topological neighbors of J such
that

wjk t;þ; 1ð Þ ¼ 1;−; η; tð Þð Þwjk tð Þ þ η tð ÞMk

9. Decrement η monotonically
10. Output the virtual clusters with their respective CoC.

Definition 3. Characteristics of Cluster
(CoC)—If Y = {c ∣ c ∈ Z and 0 ≤ c ≤ 8}
and CoBa = (C1,C2,C3,C4) is the winning
output neuron for the resources in cluster,
then Characteristics of Cluster (CoC) is the
quadruple (G1,G2,G3,G4), where Gi∈Y and
G1=C1 ,G2=C2 ,G3=C3 , and G4=C4. In
other words, CoC = (C1,C2,C3,C4).

FIGURE 8 Topological ordering of characteristics of big data used
in self‐organizing maps

FIGURE 9 A, Flowchart explaining overall working of proposed system. B, Flowchart of procedure 1. C, Flowchart of procedure 2

10 of 16 KAUR AND SOOD

Once clusters are formed, their allocation is a simple
process as shown by Figure 9B. Initially, a cluster with
CoC = CoBa (formed by big data stream) is selected for
allocation. If the selected cluster has enough resources to
process the stream, then it is allocated. Otherwise, a nearest
topological ordered cluster having enough resources is
searched and allocated. Such a scheme allows the streams to
avoid waiting for the respective cluster to get free. Therefore,
the waiting time is reduced. Here, it can be noted that whole
of the big data stream converge at the same allocated cluster.

3.3 | Systematic workflow of proposed system

The systematic workflow of the proposed system is shown by
the flowcharts in Figure 9. Initially, the proposed system waits
for the expiry of time slice “t” or arrival of a new job or
completion of a job as shown in Figure 9A. For simplicity, a
big data is referred as “job” from here on. In addition, recall that
the value of “”’ depends upon the sampling rate of adaptive
technique (as explained in Section 3). When the time slice “t”
expires, the proposed system runs procedure 1. The flowchart
for procedure 1 is shown in Figure 9B. Procedure 1 calculates
CoBa of the stream and selects an appropriate cluster such that
CoC = CoBa. If the selected cluster is free, it is allocated to the
job, and control is returned to main procedure. It can be noted
here that the selected cluster can be same as that on which the
job is already running. In such a case, it continues to run on
the same cluster. On the other hand, if the selected cluster is
not free, then a nearest topological ordered cluster is searched
and allocated. If no such cluster is found, the proposed system
proceeds to form dynamic clusters of cloud resources by using
SOM. Self‐organizing map takes list of free resources as input
and produces cloud clusters as output. The newly formed
clusters are again taken as input by procedure 1 that allocates
appropriate cluster to the job. After this allocation, control is
returned to main procedure.

If the main procedure detects the arrival of a new, then
procedures 1 and 2 are executed in parallel. Procedure 1
immediately allocates an appropriate cluster to the newly
arrived job \to reduce waiting time. Procedure 2 checks all
the other jobs in the system. Figure 9C shows flowchart for
procedure 2 where CoBa of all the jobs in the system is
calculated again. The jobs whose CoC is equal to its newly
calculated CoBa continue to run on the same cluster. All the
other jobs need to shift to a new cluster and are, therefore,
marked as shifting jobs by the proposed system. When all
the jobs are checked, the resources of shifting jobs are added
to free pool list; clusters are formed by SOM and are allocated
to shifting jobs using procedure 1. The control is again
returned to main procedure. Lastly, on completion of a job,
the resources held by it are released and added to free pool list.
These resources are used during next cluster formation pro-
cess. Hence, WEst (which calculates CoBa) and CRM (which

forms and allocates resources using SOM) work in close
coordination for efficiently managing resources of cloud.

4 | EXPERIMENTAL ANALYSIS

This section supports the proposed system with experimental
evidences. In Section 4.1, the allocation of various data flow
levels (summarized in Table 2) is supported experimentally.
Section 4.2 analyzes the performance of proposed system
by comparing it with other streaming data processing tools,
which are Apache Storm 0.92, Apache Flume 1.5.2, and
Apache S4 0.6.0. Storm is used by Twitter, Flume by
Facebook, and LinkedIn and S4 by Yahoo for stream data
processing. Section 4.2 is further divided into 3 subsections.
Section 4.2.1 presents the method used to generate synthetic
workload for the experiments. Section 4.2.1 presents the
results of the experiment while Section 4.2.3 presents
discussion of the results.

4.1 | Data flow level determination

In Section 3.1.3, it was stated that the allocation of data flow
level, given in Table 2, is based on experimental evidence. So
this section presents experimental results to support the stated
fact. For experimentation, initially, the range of values of
volume and velocity classified as low, medium, and high
randomly defined and are given in Table 4. It can be noted
here that velocity is specified in terms of number of data
elements supplied to the system in 1 minute. For instance, if
20 image elements are supplied to the system per minute, then
the velocity is said to be 20.

Thereafter, 4 databases are taken. The first database44 is
textual dataset consisting of 8 million vocabulary words.
The second database45 is an image dataset consisting of
68 040 images. The third database46 is an audio dataset that
is a collection of 1059 music tracks. The fourth database47

is a surveillance video dataset consisting 29 hours of video.
By using the first database, 3 workloads of 25, 45, and
65 GB of text data are generated. The data can be repeated
to meet the volume requirement. Note that these 3 workloads
lie in the range low, medium, and high, respectively, as per
Table 4.

Initially, the workload of 25 GB is fed to Amazon Elastic
Compute Cloud (EC2) compute optimized c4.large
instances48 at velocity of 50, and the execution time for

TABLE 4 Range of values of volume and velocity

Range Volume, GB Velocity, Data Elements per Min

Low 1‐30 1‐100

Medium 31‐50 100‐500

High 50‐80 500‐1000

KAUR AND SOOD 11 of 16

counting distinct elements is noted. Later, the velocity is
increased to 200 and 800, and the execution time is noted
again. Here, note that the 3 velocities lie in low, medium,
and high range as per Table 4. The same procedure is repeated
for the other 2 workloads. In addition, the above experiment is
repeated for image, audio, and video databases. The execution
times under all the cases are shown by a bar chart in Figure 10.

4.1.1 | Discussion of results

It can be observed from Figure 10 that among all the volumes
and velocities of text data (first 9 bars in the chart), the execu-
tion time is lowest when both volume and velocity of are low
(shown by first bar in the chart). Therefore, data flow level in
this case is assigned lowest value, ie, 0. Furthermore, the
execution time increases when velocity of text data is
increased to medium keeping volume low (as shown by
second bar in the chart). This result leads to assigning value
1 to the data flow level. When the velocity of text data is
increased to high keeping low volume, the execution time is
further increased (as shown by third bar in the chart). Hence,
in this case, value 2 is assigned to the data flow level.

Apart from this, the execution time for text data with
medium volume and low velocity (shown by fourth bar in
the chart) is higher than data with low volume and high veloc-
ity (shown by third bar in the chart). Therefore, the data level
assigned is higher for the former case. On the similar grounds,
all the data levels are determined. Furthermore, it can be
observed from Figure 10 that similar trends are observed in
case of image, audio, and video data. Hence, the data level
determination given in Table 2 is justified.

4.2 | Performance evaluation of proposed
system

4.2.1 | Workload generation method used

For efficiently evaluating the performance of proposed system,
synthetic workload is generated. This workload generation

uses all the 4 databases mentioned in Section 4.1. Here, the
process is explained with the help of an example.

Let a workload is required such that it forms CoBa = (8,
8, 0, 0). This implies that in this workload, the volume and
velocity of text and image data is high, while that of audio
and video data is low (as per Table 2). For generating such
a workload, IBM SPSS49 is used. SPSS randomly selects
data from textual database such that its volume lies in high
range (say 60 GB). The range of values of volume used in
the experiments is shown in Table 4. The data selection by
SPSS is nonexclusive, ie, the data can be repeated to meet
the volume requirement. The selected data is partitioned in
4 equal parts and added to 4 files such that each file
consists of same volume (60/4 = 15 GB) of data. Similarly,
data from image database is selected, partitioned into 4
parts and appended to the same 4 files. This process is
repeated for the other 2 databases as well by taking low
volume (say 16 GB) of data. This implies that each file
consists of 15 GB text data, 15 GB image data, 4 GB
audio data, and 4 GB video data. Hence, the workload
consisting of 4 files created with known volume and
variety. These 4 files are fed to the system in 4 minutes,
ie, 1 file in 1 minute. Here, it can be noted that in a file,
the volume of text data and image data is high. This
implies that there are more text and image data elements
in a file. Therefore, when the file is fed to the system,
the velocity of text and image data will be automatically
high. Similarly, the velocity of audio and video data will be
low. Hence, CoBa formed by this workload is (8, 8, 0, 0).
Similarly, the workloads forming different CoBa can be
generated.

4.2.2 | Experimental setup and results

To test the performance of system, 15 workloads are gener-
ated with different CoBa as shown in Table 5. The generated
workloads are fed to the system. Table 5 shows which work-
load is fed to the system at what time of the experiment. It can
be observed that 1 workload is fed to the system after every

FIGURE 10 Experimental results
justifying allocation of data flow level

12 of 16 KAUR AND SOOD

4 minutes for a total experiment of 60 minutes. This implies
that a big data stream is fed to the system such that its CoBa
changes after every 4 minutes. In addition to the generated
workloads, random data is supplied to the system to test
veracity. Variability is automatically introduced due to
change in CoBa. Hence, the big data stream characterized
by 5Vs is supplied to the system for 60 minutes. In addition,
this big data stream is also fed to Storm, Flume, and S4,
which are streaming data processing tools. The proposed sys-
tem and the 3 tools count the number of occurrences distinct
elements of the stream. The proposed system selects virtual
machines from Amazon EC2 instances from time to time
based on data characteristics. The number and type of
instances may vary with the variation of CoBa. On the other
hand, Storm, Flume, and S4 use fixed number of instances

for whole of the experiment. Each tool uses 10 Amazon
EC2 compute optimized c4.large instances. The proposed
system is implemented in a java‐based application on
Amazon EC2 compute optimized c4.large instances. The
performance of the system is tested by comparing with other
tools using 4 parameters, namely, execution latency, response
time, resource utilization, and availability. The results are
shown in Figure 11.

4.2.3 | Discussion of results

The result in Figure 11A shows that the execution latency of
proposed system is initially higher. This is because time is
taken by the system to compute CoBa of big data stream
before resources are allocated to it. Once CoBa is calculated,

TABLE 5 Various workloads generated and fed to the system

Workload No. Fed to the System at Time, min CoBa Workload no. Fed to the System at Time, min CoBa

1 0 (8, 8, 0, 0) 9 32 (7, 8, 8, 8)

2 4 (0, 8, 0, 2) 10 36 (6, 6, 6, 0)

3 8 (0, 0, 8, 1) 11 40 (5, 3, 7, 4)

4 12 (8, 8, 8, 8) 12 44 (8, 4, 5, 7)

5 16 (2, 8, 4, 3) 13 48 (0, 7, 8, 2)

6 20 (8, 8, 8, 7) 14 52 (7, 0, 2, 8)

7 24 (1, 5, 2, 4) 15 56 (5, 7, 0, 6)

8 28 (4, 8, 1, 7)

Abbreviation: CoBA, characteristics of big data.

FIGURE 11 Comparison of performance of proposed system with other tools. A, Execution latency. B, Response time. C, Resource utilization. D,
Availability

KAUR AND SOOD 13 of 16

appropriate resources are allocated by the system that results
in lower execution latency for proposed system as compared
with other tools. Moreover, the execution latency experiences
peaks at 3 points in the experiments. These 3 points are at
12th, 20th and 32nd minutes of the experiment. This is
because the big data form CoBa equal to (8,8,8,8), (8,8,8,7),
and (7,8,8,8) at these 3 points of time (refer Table 5). This
implies volume and velocity of data in all the elementary
streams are increased suddenly leading to higher execution
latency for proposed system as well as for other tools.

Figure 11B shows the response time of the system and
other tools. It is observed that the response time roughly
increases with the increase in time in case of Storm, Flume,
and S4. This is because the resources are not allocated
according to data characteristics due to which they are unable
to adapt according to changing conditions. On the other hand,
the response time of proposed system remains almost
constant for whole of the experiment since proposed system
allocates appropriate resource to big data stream from time
to time based on data characteristics.

Figure 11C shows the comparison results of proposed
system with other tools in resource utilization. The results
show that utilization of cloud resources is higher in case of
proposed system. This is due the fact that whenever CoBa
of a stream changes, it is moved to a more suitable cluster
according to data characteristics. In other words, the consid-
eration of 5Vs for resource allocation allowed better selection
of resources for data processing that enhanced utilization of
resources. Moreover, the resource utilization initially
increases with time and then become constant. This is
because SOM is learning technique. It learns from the current
state of the system and improves its output as the time passes.

Figure 11D shows that resource availability is higher in
case of proposed system as compared to other tools. The
reason for higher resource availability is the topological
ordered cluster formed by proposed system. The topological
ordering allows big data stream to acquire other similar
resources in case of nonavailability of required resources
rather than waiting for busy resources. The results presented
in this section suggest that the proposed system efficiently
manages cloud resource in real time for big data streams.

5 | CONCLUSIONS

In this paper, a dynamic system is proposed that works in real
time to predict volume, velocity, variety, variability, and
veracity of data in big data streams. These 5Vs are used for
dynamically allocating appropriate cloud resources to big
data streams. Extensive experiments are performed to evalu-
ate the performance of proposed system by comparing it with
Storm, Flume, and S4. Virtual machines are selected from
Amazon EC2 instances by the proposed system from time

to time based on data characteristics. On the other hand,
Amazon EC2 compute optimized c4.large instances are
allocated for Storm, Flume, and S4. This allocation is
constant throughout the experiment. The experimental results
illustrate a performance edge of proposed system over other
tools. The overall execution latency for processing data
streams is 11.013 milliseconds for proposed system as
compared with 19.648 milliseconds for Storm, 20.403 -
milliseconds for Flume, and 21.567 milliseconds for S4.
Furthermore, the average response time of proposed system
is 1.036 seconds as compared with 1.908 seconds for Storm,
1.935 seconds for Flume, and 1.921 seconds for S4. This
shows that the latency and response time is reduced
considerably due to dynamic resource allocation in the
proposed system based on data characteristics. Moreover,
availability of cloud resources in proposed system is
enhanced by 9.31%, 7.95%, and 10.02% as compared with
Storm, Flume, and S4, respectively. In addition, resource
utilization of proposed system is improved by 24.5%,
22.5%, and 34.4% over Storm, Flume, and S4, respectively.
This is due to topological ordering of cloud resources. There-
fore, predicting 5Vs and topological ordering of resources
form 2 major strengths of proposed system.

REFERENCES

1. Schroeck M, Shockley R, Smart J, Romero‐Morales D, Tufano P.
Analytics: the real‐world use of big data. In IBM Global Business
Services; 2012.

2. Gandomi A, Haider M. Beyond the hype: big data concepts,
methods, and analytics. Int J Inf Manage. 2015;35:137‐144.

3. TechAmerica Foundation: Federal Big Data Commission. A practi-
cal guide to transforming the business of government; 2012:1–40.
Retrieved from http://www.techamerica.org/Docs/fileManager.cfm?
f=techamerica bigdatareport‐final.pdf

4. Cukier K. The economist, data, data everywhere: a special report on
managing information, 2010, February 25; 2010. Retrieved from
http://www.economist.com/node/15557443

5. Lazar N. The big picture: big data computing. Chance. 2013;26
(2):28‐32.

6. Yang C, Huang Q, Li Z, Liu K, Hu F. Big data and cloud computing:
innovation opportunities and challenges. Int J Digit Earth.
2016;8947:1‐41.

7. Hashem IAT, Yaqoob I, Badrul Anuar N, Mokhtar S, Gani A, Ullah
Khan S. The rise of ‘big data’ on cloud computing: review and open
research issues. Inf Syst. 2015;47:98‐115.

8. Yaqoob I, Hashem IAT, Gani A, et al. Big data: from beginning to
future. Int J Inf Manage. 2016;36(6):1231‐1247.

9. Twitter usage statistics—Internet live stats. [Online]. Available:
http://www.internetlivestats.com/twitter‐statistics/. [Accessed: 20‐
Jan‐2017].

10. Zhang Q, Chen Z, Yang LT. A nodes scheduling model based on
Markov chain prediction for big streaming data analysis. Int J
Commun Syst. 2015;28(9):1610‐1619.

14 of 16 KAUR AND SOOD

http://www.techamerica.org/Docs/fileManager.cfm?f=techamerica
http://www.techamerica.org/Docs/fileManager.cfm?f=techamerica
http://www.economist.com/node/15557443
http://www.internetlivestats.com/twitter-statistics

11. Baughman AK, Bogdany RJ, McAvoy C, Locke R, O'Connell B,
Upton C. Predictive cloud computing with big data: professional
golf and tennis forecasting [application notes]. IEEE Comput Intell
Mag. 2015;10(3):62‐76.

12. Castiglione A, Pizzolante R, De Santis A, Carpentieri B, Castiglione
A, Palmieri F. Cloud‐based adaptive compression and secure man-
agement services for 3D healthcare data. Futur Gener Comput
Syst. 2015;43–44:120‐134.

13. De Francisci Morales G, Bifet A, Khan L, Gama J, Fan W. IoT Big
Data Stream Mining. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining‐KDD ‘16. San Francisco, CA, USA: ACM; 2016:2119‐
2120.

14. Rehman MH ur, Liew CS, Wah TY, Khan MK. Towards next‐gener-
ation heterogeneous mobile data stream mining applications:
opportunities, challenges, and future research directions. J Netw
Comput Appl. 2017;79:1‐24.

15. Rajaraman A, Ullman JD. Bloom Filter. In: Mining of Massive
Datasets. First edit ed. Cambridge University Press; 2014:116‐118.

16. Kalman RE. A new approach to linear filtering and prediction prob-
lems. J basic Eng. 1960;82(1):35‐45.

17. Kohonen T. Self‐Organization and Associative Memory. vol. 8.
Berlin, Heidelberg: Springer Berlin Heidelberg; 1989.

18. Sapountzi A, Psannis KE. Social networking data analysis tools and
challenges. Futur Gener Comput Syst. 2016: https://doi.org/
10.1016/j.future.2016.10.019.

19. Chen V, Chiang H, Sorey R. Business intelligence and analytics:
from big data to big impact. MIS Q. 2012;36(4):1165‐1188.

20. Stergiou C, Psannis KE. Recent advances delivered by mobile cloud
computing and Internet of Things for big data applications: a
survey. Int J Netw Manag. 2016. https://doi.org/10.1016/j.
future.2016.10.019

21. Hahanov V, Miz V, Litvinova E, Mishchenko A, Shcherbin D. Big
Data Driven Cyber Physical Systems. In: The Experience of
Designing and Application of CAD Systems in Microelectronics.
Polyana, Ukraine: IEEE; 2015:76‐80.

22. Van Den Dam R. Internet of Things: The Foundational Infrastruc-
ture for a Smarter Planet. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). St. Petersburg, Russia; Vol. 8121
LNCS; 2013:1‐12.

23. Chen M, Mao S, Liu Y. Big data: a survey. Mob Networks Appl.
2014;19(2):171‐209.

24. Philip Chen CL, Zhang CY. Data‐intensive applications, challenges,
techniques and technologies: a survey on big data. Inf Sci (Ny).
2014;275:314‐347.

25. Pumma S, Achalakul T, Xiaorong L. Automatic VM Allocation for
scientific application. In: Proceedings of the International
Conference on Parallel and Distributed Systems‐ICPADS. Singa-
pore: IEEE; 2012:828‐833.

26. Singh S, Chana I. Cloud resource provisioning: survey, status and
future research directions. Knowl Inf Syst. 2016;49(3):1005‐1069.

27. Zhang J, Huang H, Wang X. Resource provision algorithms in cloud
computing: a survey. J Netw Comput Appl. 2016;64:23‐42.

28. Memos VA, Psannis KE. A New Methodology Based on Cloud
Computing for Efficient Virus Detection. In: New Trends in
Networking, Computing, E‐learning, Systems Sciences, and
Engineering. Springer International Publishing; 2015:37‐47.

29. Vasile M‐A, Pop F, Tutueanu R‐I, Cristea V, Kołodziej J, Kolodziej
J. Resource‐aware hybrid scheduling algorithm in heterogeneous
distributed computing. Futur Gener Comput Syst. 2015;51:61‐71.

30. Zhan Z‐H, Liu X‐F, Gong Y‐J, Zhang J, Chung HS‐H, Li Y. Cloud
computing resource scheduling and a survey of its evolutionary
approaches. ACM Comput Surv. 2015;47(4):1‐33.

31. Sfrent A, Pop F. Asymptotic scheduling for many task computing in
big data platforms. Inf Sci (Ny). 2015;319:71‐91.

32. Sandhu R, Sood SK. Scheduling of big data applications on distrib-
uted cloud based on QoS parameters. Cluster Comput. 2014;18
(2):817‐828.

33. Kokkonis G, Psannis KE, Roumeliotis M, Schonfeld D. Real‐time
wireless multisensory smart surveillance with 3D‐HEVC streams
for Internet‐of‐Things (IoT). J Supercomput. 2016;1‐19. https://doi.
org/10.1007/s11227‐016‐1769‐9

34. Plageras AP, Psannis KE, Ishibashi Y, Kim B‐G. IoT‐based surveil-
lance system for ubiquitous healthcare. IECON 2016‐42nd Annu.
Conf. IEEE Ind. Electron. Soc.; 2016:24–27.

35. Trilles S, Belmonte Ò, Schade S, Huerta J. A domain‐independent
methodology to analyze IoT data streams in real‐time. A proof of
concept implementation for anomaly detection from environmental
data. Int J Digit Earth. 2017;10(1):103‐120.

36. Su X, Gilman E, Wetz P, Riekki J, Zuo Y, Leppänen T. Stream Rea-
soning for the Internet of Things. In: Proceedings of the 6th
International Conference on Web Intelligence, Mining and Seman-
tics‐WIMS ‘16. Nîmes, France: ACM; 2016:1‐10.

37. Yasumoto K, Yamaguchi H, Shigeno H. Survey of real‐time
processing technologies of IoT data streams. J Inf Process.
2016;24(2):195‐202.

38. Cortés R, Bonnaire X, Marin O, Sens P. Stream processing of
healthcare sensor data: Studying user traces to identify challenges
from a big data perspective. Procedia Comput Sci.
2015;52:1004‐1009.

39. Sun D, Zhang G, Yang S, Zheng W, Khan SU, Li K. Re‐stream:
real‐time and energy‐efficient resource scheduling in big data stream
computing environments. Inf Sci (Ny). 2015;319:95‐112.

40. Tolosana‐Calasanz R, Bañares JÁ, Pham C, Rana OF. Resource
management for bursty streams on multi‐tenancy cloud environ-
ments. Futur Gener Comput Syst. 2016;55:444‐459.

41. Rahman M, Graham P. Responsive and efficient provisioning for
multimedia applications. Comput Electr Eng. 2016;53:458‐468.

42. Jain A, Chang EY. Adaptive Sampling for Sensor Networks. In:
Proceeedings of the 1st international workshop on Data manage-
ment for sensor networks in conjunction with VLDB 2004—DMSN
‘04. Toronto, Canada: ACM; 2004:10–16.

43. Feng B, Fu M, Ma H, Xia Y, Wang B. Kalman filter with recursive
covariance estimation‐sequentially estimating process noise covari-
ance. IEEE Trans Ind Electron. 2014;61(11):6253‐6263.

44. UCI machine learning repository: bag of words data set. [Online].
Available: https://archive. ics.uci.edu/ml/datasets/Bag+of+Words.
[Accessed: 20‐Jan‐2017].

KAUR AND SOOD 15 of 16

https://doi.org/10.1016/j.future.2016.10.019
https://doi.org/10.1016/j.future.2016.10.019
https://doi.org/10.1016/j.future.2016.10.019
https://doi.org/10.1016/j.future.2016.10.019
https://doi.org/10.1007/s11227-016-1769-9
https://doi.org/10.1007/s11227-016-1769-9
https://archive
http://ics.uci.edu

45. UCI machine learning repository: corel image features data set.
[Online]. Available: https://archive.ics.uci.edu/ml/datasets/Corel+
Image+Features. [Accessed: 20‐Jan‐2017].

46. UCI machine learning repository: geographical original of music
data set. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/
Geographical+Original+of+Music. [Accessed: 20‐Jan‐2017].

47. Oh S, Hoogs A, Perera A, Cuntoor N, Chen CC, Lee JT, Mukherjee
S, Aggarwal JK, Lee H, Davis L, Swears E. A Large‐scale Bench-
mark Dataset for Event Recognition in Surveillance Video. In:
CVPR 2011. Colorado, USA: IEEE; 2011:3153‐3160.

48. EC2 instance types—Amazon web services (AWS). [Online].
Available: https://aws.amazon.com/ec2/instance‐types/. [Accessed:
22‐Jan‐2017].

49. IBM‐SPSS software—India. IBM Corporation; 19‐Jan‐2017.

Navroop Kaur received her M.Tech degree with distinc-
tion in Computer Science and Engineering from Guru
Nanak Dev University, Amritsar, and B.Tech degree with
distinction from Beant College of Engineering and Tech-
nology, Gurdaspur. Presently, she is pursuing her doctor-
ate degree in the Department of Computer Science and

Engineering, Guru Nanak Dev University, Amritsar. She
has publications in various SCI/SCIE journals. Her cur-
rent working research areas include Internet of Things,
big data, fog computing, and cloud computing.

Dr Sandeep K. Sood did his PhD in Computer Science
and Engineering from IIT Roorkee, India. He is currently
working as Head and Professor, Computer Science and
Engineering, G.N.D.U. Regional Campus, Gurdaspur.
He has 17 years of teaching and 10 years of research
experience. He has more than 50 research publications.
His research areas are network and information security,
cloud computing, big data, fog computing, and Internet
of Things.

How to cite this article: Kaur N, Sood SK. Dynamic
resource allocation for big data streams based on data
characteristics (5Vs). Int J Network Mgmt. 2017:e1978.
https://doi.org/10.1002/nem.1978

16 of 16 KAUR AND SOOD

https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://aws.amazon.com/ec2/instance-types
https://doi.org/10.1002/nem.1978

